718 resultados para BILAYER
Resumo:
A simple strategy to exfoliate inorganic layered double hydroxide (LDH) solids to their ultimate constituent, intact single layers of nanometer thickness and micrometer size, is presented. The procedure involves intercalation of an ionic surfactant that forms a hydrophobic anchored surfactant bilayer in the galleries of the solid followed by simply stirring the intercalated solid in toluene. The method is rapid but at the same time gentle enough to produce exfoliated nanosheets of regular morphology that are electrically neutral and form stable gels at higher concentrations. In this Letter, we describe the phenomena and use molecular dynamics simulations to show that exfoliation of the LDH in toluene is a consequence of the modification of the cohesive dispersive interactions between surfactant chains anchored on opposing inorganic sheets by the toluene molecules. The toluene molecules function as a molecular glue, holding the surfactant-anchored LDH sheets together, leading to gel formation.
Resumo:
Eight new dimeric lipids, in which the two Me2N+ ion headgroups are separated by a variable number of polymethylene units [-(CH2)(m)-], have been synthesized. The electron micrograph (TEM) and dynamic light scattering (DLS) of their aqueous dispersions confirmed the formation of vesicular-type aggregates. The vesicle sizes and morphologies were found to depend strongly on the m value, the method, and thermal history of the vesicle preparation. Information on the thermotropic properties of the resulting vesicles was obtained from microcalorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, the T-m values for these vesicles revealed a nonlinear dependence on spacer chain length (m value). These vesicles were able to entrap riboflavin. The rates of permeation of the OH- ion under an imposed transmembrane pH gradient were also found to depend significantly on the m value. X-Ray diffraction of the cast films of the lipid dispersions elucidated the nature and the thickness of these membrane organizations, and it was revealed that these lipids organize in three different ways depending on the m value. The EPR spin-probe method with the doxylstearic acids 5NS, 12NS, and 16NS, spin-labeled at various positions of stearic acid, was used to establish, the chain-flexibility gradient and homogeneity of these bilayer assemblies. The apparent fusogenic propensities of these bipolar tetraether lipids were investigated in the presence of Na2SO4 with fluorescence-resonance energy-transfer fusion assay. Small unilamellar vesicles formed from 1 and three representative biscationic lipids were also studied with fluorescence anisotropy and H-1 NMR spectroscopic techniques in the absence and the presence of varying amounts of cholesterol.
Resumo:
A novel series of vesicle-forming ion-paired amphiphiles, bis(hexadecyldimethylammonium)alkane dipalmitate (1a-1h), containing four chains were synthesized with two isolated headgroups. In each of these amphiphiles, the two headgroup charges are separated by a flexible polymethylene spacer chain -[(CH2)(m)]- of varying lengths (m) such that the length and the conformation of the spacer chain determine the intra-"monomer" headgroup separation. Transmission electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. The vesicular properties of these aggregates have been examined by differential scanning calorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, their T-m values decreased with the increase in the m value. Thus while the apparent T-m of the lipid with m = 2 (1a) is 74.1 degrees C, the corresponding value observed for the lipid with m = 12 (1h) is 38.9 degrees C. The fluorescence anisotropy values (r) for 1b-1g were quite high (r similar to 0.3) compared to that of 1h (r similar to 0.23) at 20-30 degrees C in their gel states. On the other hand, the r value for vesicular 1b beyond melting was higher (0.1) compared to any of those for 1c-1h (similar to 0.04-0.06). X-ray diffraction of the cast films was performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 30 to 51 A as the m values varied. The entrapment of a small water-soluble solute, riboflavin, by the individual vesicular aggregates, and their sustenance: under an imposed transmembrane pH gradient have also been examined. These results show that all lipid vesicles entrap riboflavin and that generally the resistance to OH- permeation decreases with the increase in m value. Finally,all the above observations were comparatively analyzed, and on the basis of the calculated structures of these lipids, it was possible to conclude that membrane propel-ties can be modulated by spacer chain length variation of the ion-paired amphiphiles.
Resumo:
Layered organic inorganic hybrids based on perovskite-derived alkylammonium lead halides have been demonstrated as important new materials in the construction of molecular electronic devices. Typical of this class of materials are the single-perovskite slab lead iodides of the general formula (CnH2n+1NH3)(2)PbI4. While for small n, these compounds are amenable to single-crystal structure determination, the increasing degree of disorder in the long chain (n = 12,14...) compounds makes such an analysis difficult. In this study, we use powder X-ray diffraction, and vibrational and C-13 NMR spectroscopies to establish the conformation, orientation and organization of hydrocarbon chains in the series of layered alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4 (n = 12,16,18). We find that the alkyl chains adopt a tilted bilayer arrangement, while the structure of the inorganic layer remains invariant with respect to the value of n. Conformation-sensitive methylene stretching modes in the infrared and Raman spectra, as well as the C-13 NMR spectra indicate that bonds in the methylene chain are in trans configuration. The skeletal modes of the alkyl chain in the Raman spectra establish that there is a high degree of all-trans conformational registry for the values of n studied here. From the orientation dependence of the infrared spectra of crystals of (CnH2n+1NH3)(2)PbI4 ( n = 12,16), we find that the molecular axis of the all-trans alkyl chains are tilted away from the interlayer normal by an angle of 55degrees. This value of this tilt angle is consistent with the dependence of the c lattice expansion as a function of n, as determined from powder X-ray diffraction.
Resumo:
Detailed small angle neutron scattering ( SANS) studies were carried out with the aqueous vesicular (unilamellar) suspension of dimeric ion-paired lipids (2a-2c) for spacer lengths corresponding to n-values of 2, 6 and 10 and monomeric ion-paired lipid (3) below and above the phase transition temperature of each amphiphile. The vesicular structure strongly depends on the spacer chain length. The mean vesicle size is smallest for the lipid with a short spacer, n = 3 and it increases with the increase in the spacer chain length. The bilayer thickness also decreases with the increase in the spacer chain length. The size polydispersity increases with the increase in the spacer chain length (n-value).
Resumo:
Rotational dynamics of polarity sensitive fluorescent dyes (ANS and DPH) in a nonpolymertic aqueous gel derived from tripodal cholamide I was studied using ultrafast time-resolved fluorescence technique. Results were compared with that of naturally occurring di- and trihydroxy bile salts. ANS in the gel showed two rotational correlation time (phi) components, 13.2 ns (bound to the hydrophobic region of the gel) and 1.0 ns (free aqueous ANS), whereas DPH showed only one component (4.8 ns). In the sol state, faster rotational motion was observed, both for ANS and DPH. Our data revealed that dyes get encapsulated more tightly in the gel network when compared to the micellar aggregates. ANS has more restrained rotation compared to DPH. This was attributed to the interaction of the sulfonate group of ANS with water molecules and hydrophilic parts of the gelator molecule. No restricted rotation was observed for DPH in the gel state unlike when it is in the gel phase of lipid bilayer.
Resumo:
We have carried out small-angle X-ray diffraction studies on complexes formed by the anionic polyelectrolytes, namely, sodium salts of double and single stranded (ds and ss) DNA, poly( glutamic acid) ( PGA), poly( acrylic acid) (PAA), and poly( styrene sulfonate) (PSS) with a cationic surfactant system consisting of cetyltrimethylammonium bromide ( CTAB) and sodium 3-hydroxy-2-naphthoate (SHN). All complexes have a two-dimensional (2D) hexagonal structure at low SHN concentrations. DNA-CTAB-SHN complexes exhibit a hexagonal to lamellar transition near the SHN concentration at which CTAB-SHN micelles show a cylinder to bilayer transformation. On the other hand, PGA and PAA complexes form a 2D centered rectangular phase at higher SHN concentrations, and PSS complexes show a primitive rectangular structure. These results provide a striking example of polyion specificity in polyelectrolytesurfactant interactions.
Resumo:
Bilayer thin films of Te/As(2)S(3) were prepared from Te and As(2)S(3) by thermal technique under high vacuum. Optical constants were calculated by analysing the transmission spectrum in the spectral range 400-1100 nm. The optical band gap decreases with the addition of Te to As(2)S(3). The decrease of optical band gap has been explained on the basis of density of states and the increase in disorder in the system. We have irradiated the as-deposited films using a diode pumped solid state laser of 532 nm wavelength to study photo-diffusion of Te into As(2)S(3). The changes were characterised by Fourier Transform Infrared and X-ray Photoelectron Spectroscopy (XPS). The optical band gap is found to be decreased with the light irradiation which is proposed due to homopolar bond formation. The core level peaks in XPS spectra give information about different bond formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We present low-temperature electrical transport experiments in five field-effect transistor devices consisting of monolayer, bilayer, and trilayer MoS(2) films, mechanically exfoliated onto Si/SiO(2) substrate. Our experiments reveal that the electronic states In all films are localized well up to room temperature over the experimentally accessible range of gate voltage. This manifests in two-dimensional (2D) variable range hopping (VRH) at high temperatures, while below similar to 30 K, the conductivity displays oscillatory structures In gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T(0)) of VRH and gate voltage dependence of conductivity, we suggest that Coulomb potential from trapped charges In the substrate is the dominant source of disorder in MoS(2) field-effect devices, which leads to carrier localization, as well.
Resumo:
In this article we review the current status in the modelling of both thermotropic and lyotropic Liquid crystal. We discuss various coarse-graining schemes as well as simulation techniques such as Monte Carlo (MC) and Molecular dynamics (MD) simulations.In the area of MC simulations we discuss in detail the algorithm for simulating hard objects such as spherocylinders of various aspect ratios where excluded volume interaction enters in the simulation through overlap test. We use this technique to study the phase diagram, of a special class of thermotropic liquid crystals namely banana liquid crystals. Next we discuss a coarse-grain model of surfactant molecules and study the self-assembly of the surfactant oligomers using MD simulations. Finally we discuss an atomistically informed coarse-grained description of the lipid molecules used to study the gel to liquid crystalline phase transition in the lipid bilayer system.
Resumo:
We present here a series of cholesterol based cationic lipid suspensions that solubilize single-walled carbon nanotubes (SWCNT) efficiently in water. Each cationic lipid formulation was characterized in terms of their energy minimized molecular structures, bilayer widths of the aggregates based on X-ray diffraction. Then these aggregates were investigated pertaining to their DNA binding and release efficiency, effect of CNT inclusion on the stability of cationic cholesterol lipid-DNA complexes, Zeta potential values and changes in the chiro-optical property of DNA, effect on Raman spectral shift and changes in morphology by SEM and AFM. Each cationic lipid formulation was optimized for the amount of SWCNT solubilized in water, lipid-DNA ratio, amount of the plasmid DNA that can be transfected and the effect on the cellular toxicity. The resulting SWCNT-lipid formulations were then used for in vitro transfection of pEGFP-C3 in A549 (human alveolar basal epithelial) cells and HeLa (human cervical cancer) cells. Advantageously, the CNT-loaded formulations confer an excellent transfection efficiency even in high percentages of blood serum and showed significantly better gene transfer efficiency compared to one of the potent, well-known commercial transfection reagent, Lipofectamine2000.
Resumo:
AIN/CrN multilayer hard coatings with various bilayer thicknesses were fabricated by a reactive sputtering process. The microstructural and mechanical characterizations of multilayer coatings were investigated through transmission electron microscope (TEM) observations and the hardness measurements by nano indentation. In particular, the variation of chemical bonding states of the bilayer nitrides was elucidated by near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Many broken nitrogen bonds were formed by decreasing the bilayer thickness of AIN/CrN multilayer coatings. Existence of optimum AIN/CrN multilayer coatings thickness for maximum hardness could be explained by the competition of softening by the formation of broken nitrogen bonds and strengthening induced by decreasing bilayer thickness.
Resumo:
In order to resolve some missing micromechanistic details regarding contact deformation in nitride multilayer coatings we report here observations from cross-sectional transmission electron microscopy and focused ion beam studies of the Vickers indentations on TiN/TiAlN multilayer films of various total thicknesses as well as bilayer periods. The study of damage induced by contact deformation in a nitride multilayer coating is complemented by stress calculated using an analytical model. Kinked boundaries of sliding columns give rise to cracks which propagate at an angle to the indentation axis under a combination of compressive and shear stresses. It is seen that multilayers provide more distributed columnar sliding, thereby reducing the stress intensity factor for shear cracking, while interfacial dislocations provide a stress relief mechanism by enabling lateral movement of material. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. © 2012 Wiley Periodicals, Inc.
Resumo:
We have developed a graphical user interface based dendrimer builder toolkit (DBT) which can be used to generate the dendrimer configuration of desired generation for various dendrimer architectures. The validation of structures generated by this tool was carried out by studying the structural properties of two well known classes of dendrimers: ethylenediamine cored poly(amidoamine) (PAMAM) dendrimer, diaminobutyl cored poly(propylene imine) (PPI) dendrimer. Using full atomistic molecular dynamics (MD) simulation we have calculated the radius of gyration, shape tensor and monomer density distribution for PAMAM and PPI dendrimer at neutral and high pH. A good agreement between the available simulation and experimental (small angle X-ray and neutron scattering; SAXS, SANS) results and calculated radius of gyration was observed. With this validation we have used DBT to build another new class of nitrogen cored poly(propyl ether imine) dendrimer and study it's structural features using all atomistic MD simulation. DBT is a versatile tool and can be easily used to generate other dendrimer structures with different chemistry and topology. The use of general amber force field to describe the intra-molecular interactions allows us to integrate this tool easily with the widely used molecular dynamics software AMBER. This makes our tool a very useful utility which can help to facilitate the study of dendrimer interaction with nucleic acids, protein and lipid bilayer for various biological applications. (c) 2012 Wiley Periodicals, Inc.