898 resultados para Awake rats
Resumo:
The gonadal steroids, in particular estradiol, exert an important action during perinatal period in the regulation of sexual dimorphism and neuronal plasticity, and in the growth and development of nervous system. Exposure of the developing female to estrogens during perinatal period may have long-lasting effects that are now regarded as “programming” the female neuroendocrine axis to malfunction in adulthood. The purpose of this study was to describe the effect of a single administration of a low dose (10 μg) of β-estradiol 3-benzoate (EB) to female rats on the day of birth on brain and plasma concentrations of the neuroactive steroid allopregnanolone, general behaviours and behavioral sensitivity to benzodiazepines. Neonatal administration of EB induces a dramatic reduction in the cerebrocortical and plasma levels of allopregnanolone and progesterone that were apparent in both juvenile (21 days) and adult (60 days). In contrast, this treatment did not affect 17β-estradiol levels. Female rats treated with β-estradiol 3-benzoate showed a delay in vaginal opening, aciclicity characterized by prolonged estrus, and ovarian failure. Given that allopregnanolone elicits anxiolytic, antidepressive, anticonvulsant, sedative-hypnotic effects and facilitates social behaviour, we assessed whether this treatment might modify different emotional, cognitive and social behaviours. This treatment did not affect locomotor activity, anxiety- and mood-related behaviours, seizures sensitivity and spatial memory. In contrast, neonatal β-estradiol 3-benzoate-treated rats showed a dominant, but not aggressive, behaviour and an increase in body investigation, especially anogenital investigation, characteristic of male appetitive behaviour. On the contrary, neonatal administration of β-estradiol 3-benzoate to female rats increases sensitivity to the anxiolytic, sedative, and amnesic effects of diazepam in adulthood. These results indicate that the marked and persistent reduction in the cerebrocortical and peripheral concentration of the neuroactive steroid allopregnanolone induced by neonatal treatment with β-estradiol 3-benzoate does not change baseline behaviours in adult rats. On the contrary, the low levels of allopregnanolone seems to be associated to changes in the behavioural sensitivity to the positive allosteric modulator of the GABAA receptor, diazepam. These effects of estradiol suggest that it plays a major role in pharmacological regulation both of GABAergic transmission and of the abundance of endogenous modulators of such transmission during development of the central nervous system.
Resumo:
Initial studies have demonstrated that intra- renal infusion of Ang (1-7) caused a diuresis and natriuresis that was proportional to the degree of activation of the Renin Angiotensin Aldosterone System (RAAS). This raised the question as why the magnitude of this diuresis and natriuresis was compromised in rats receiving a high sodium diet (suppressed RAAS) and enhanced in low sodium fed rats (activated RAAS)? Could the answer lie with changes in intra-renal AT1 or Mas receptor expression? Interestingly, the observed Ang (1-7) induced increases in sodium and water excretion in rats receiving either a low or normal sodium diet were and blocked in the presence of the AT 1 receptor antagonist (Losartan) in the presence of the, 'Mas' receptor antagonist (A-779). These data suggest that both AT1 and 'Mas' receptors need to be functional in order to fully mediate the renal responses to intra-renal Ang (1-7) infusion. Importantly, further experimentation also revealed that there is a proportional relationship between AT 1 receptor expression in the rat renal cortex and the magnitude of the excretory actions of intra renal Ang (1-7) infusion, which is only partially dependent on the level of 'Mas' receptor expression. These observations suggest that although Ang (1-7) induced increases in sodium and water excretion are mediated by the Mas receptor, the magnitude of these excretory responses appear to be dependent upon the level of AT 1 receptor expression and more specifically Ang II/ AT 1 receptor signalling. Thus in rats receiving a low sodium diet, Ang (1-7) acts via the Mas receptor to inhibit Ang II/ AT 1 receptor signalling. In rats receiving a high sodium diet the down regulated AT 1 receptor expression implies a reduction in Ang II/ AT 1 receptor signalling which renders the counter-regulatory effects of intra-renal Ang (1-7) infusion redundant.
Resumo:
OBJECTIVES: To develop a sleep hypoxia (SH) in emphysema (SHE) rat model and to explore whether SHE results in more severe hepatic inflammation than emphysema alone and whether the inflammation changes levels of coagulant/anticoagulant factors synthesized in the liver. METHODS: Seventy-five rats were put into 5 groups: SH control (SHCtrl), treated with sham smoke exposure (16 weeks) and SH exposure (12.5% O(2), 3 h/d, latter 8 weeks); emphysema control (ECtrl), smoke exposure and sham SH exposure (21% O(2)); short SHE (SHEShort), smoke exposure and short SH exposure (1.5 h/d); mild SHE (SHEMild), smoke exposure and mild SH exposure (15% O(2)); standard SHE (SHEStand), smoke exposure and SH exposure. Therefore, ECtrl, SHEShort, SHEMild and SHEStand group were among emphysematous groups. Arterial blood gas (ABG) data was obtained during preliminary tests. After exposure, hepatic inflammation (interleukin -6 [IL-6] mRNA and protein, tumor necrosis factor α [TNFα] mRNA and protein) and liver coagulant/anticoagulant factors (antithrombin [AT], fibrinogen [FIB] and Factor VIII [F VIII]) were evaluated. SPSS 11.5 software was used for statistical analysis. RESULTS: Characteristics of emphysema were obvious in emphysematous groups and ABGs reached SH criteria on hypoxia exposure. Hepatic inflammation parameters and coagulant factors are the lowest in SHCtrl and the highest in SHEStand while AT is the highest in SHCtrl and the lowest in SHEStand. Inflammatory cytokines of liver correlate well with coagulant factors positively and with AT negatively. CONCLUSIONS: When SH is combined with emphysema, hepatic inflammation and coagulability enhance each other synergistically and produce a more significant liver-derivative inflammatory and prothrombotic status.
Resumo:
BACKGROUND: Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB) animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we employed chronically implanted multielectrode arrays (MEA) to record avalanches of action potentials (spikes) from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN). We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS/SIGNIFICANCE: Altogether, the data provide a comprehensive link between behavior and brain criticality, revealing a unique scale-invariant regime of spike avalanches across all major behaviors.
Resumo:
INTRODUCTION: Increasing number of stretch-shortening contractions (SSCs) results in increased muscle injury. METHODS: Fischer Hybrid rats were acutely exposed to an increasing number of SSCs in vivo using a custom-designed dynamometer. Magnetic resonance imaging (MRI) imaging was conducted 72 hours after exposure when rats were infused with Prohance and imaged using a 7T rodent MRI system (GE Epic 12.0). Images were acquired in the transverse plane with typically 60 total slices acquired covering the entire length of the hind legs. Rats were euthanized after MRI, the lower limbs removed, and tibialis anterior muscles were prepared for histology and quantified stereology. RESULTS: Stereological analyses showed myofiber degeneration, and cellular infiltrates significantly increased following 70 and 150 SSC exposure compared to controls. MRI images revealed that the percent affected area significantly increased with exposure in all SSC groups in a graded fashion. Signal intensity also significantly increased with increasing SSC repetitions. DISCUSSION: These results suggest that contrast-enhanced MRI has the sensitivity to differentiate specific degrees of skeletal muscle strain injury, and imaging data are specifically representative of cellular histopathology quantified via stereological analyses.
Resumo:
SUMMARY: Fracture stabilization in the diabetic patient is associated with higher complication rates, particularly infection and impaired wound healing, which can lead to major tissue damage, osteomyelitis, and higher amputation rates. With an increasing prevalence of diabetes and an aging population, the risks of infection of internal fixation devices are expected to grow. Although numerous retrospective clinical studies have identified a relationship between diabetes and infection, currently there are few animal models that have been used to investigate postoperative surgical-site infections associated with internal fixator implantation and diabetes. The authors therefore refined the protocol for inducing hyperglycemia and compared the bacterial burden in controls to pharmacologically induced type 1 diabetic rats after undergoing internal fracture plate fixation and Staphylococcus aureus surgical-site inoculation. Using an initial series of streptozotocin doses, followed by optional additional doses to reach a target blood glucose range of 300 to 600 mg/dl, the authors reliably induced diabetes in 100 percent of the rats (n = 16), in which a narrow hyperglycemic range was maintained 14 days after onset of diabetes (mean ± SEM, 466 ± 16 mg/dl; coefficient of variation, 0.15). With respect to their primary endpoint, the authors quantified a significantly higher infectious burden in inoculated diabetic animals (median, 3.2 × 10 colony-forming units/mg dry tissue) compared with inoculated nondiabetic animals (7.2 × 10 colony-forming units/mg dry tissue). These data support the authors' hypothesis that uncontrolled diabetes adversely affects the immune system's ability to clear Staphylococcus aureus associated with internal hardware.
Resumo:
Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.
Resumo:
BACKGROUND: Some of the 600,000 patients with solid organ allotransplants need reconstruction with a composite tissue allotransplant, such as the hand, abdominal wall, or face. The aim of this study was to develop a rat model for assessing the effects of a secondary composite tissue allotransplant on a primary heart allotransplant. METHODS: Hearts of Wistar Kyoto rats were harvested and transplanted heterotopically to the neck of recipient Fisher 344 rats. The anastomoses were performed between the donor brachiocephalic artery and the recipient left common carotid artery, and between the donor pulmonary artery and the recipient external jugular vein. Recipients received cyclosporine A for 10 days only. Heart rate was assessed noninvasively. The sequential composite tissue allotransplant consisted of a 3 x 3-cm abdominal musculocutaneous flap harvested from Lewis rats and transplanted to the abdomen of the heart allotransplant recipients. The abdominal flap vessels were connected to the femoral vessels. No further immunosuppression was administered following the composite tissue allotransplant. Ten days after composite tissue allotransplantation, rejection of the heart and abdominal flap was assessed histologically. RESULTS: The rat survival rate of the two-stage transplant surgery was 80 percent. The transplanted heart rate decreased from 150 +/- 22 beats per minute immediately after transplant to 83 +/- 12 beats per minute on day 20 (10 days after stopping immunosuppression). CONCLUSIONS: This sequential allotransplant model is technically demanding. It will facilitate investigation of the effects of a secondary composite tissue allotransplant following primary solid organ transplantation and could be useful in developing future immunotherapeutic strategies.
Resumo:
Prenatal nicotine exposure (PNE) is linked to a large number of psychiatric disorders, including attention deficit hyperactivity disorder (ADHD). Current literature suggests that core deficits observed in ADHD reflect abnormal inhibitory control governed by the prefrontal cortex (PFC) of the brain. The PFC is structurally altered by PNE, but it is still unclear how neural firing is affected during tasks that test behavioral inhibition, such as the stop-signal task, or if neural correlates related to inhibitory control are affected after PNE in awake behaving animals. To address these questions, we recorded from single medial PFC (mPFC) neurons in control rats and PNE rats as they performed our stopsignal task. We found that PNE rats were faster for all trial types and were less likely to inhibit the behavioral response on STOP trials. Neurons in mPFC fired more strongly on STOP trials and were correlated with accuracy and reaction time. Although the number of neurons exhibiting significant modulation during task performance did not differ between groups, overall activity in PNE was reduced. We conclude that PNE makes rats impulsive and reduces firing in mPFC neurons that carry signals related to response inhibition.
Resumo:
AUTHOR's OVERVIEW This chapter attempts a definition of London eco-gothic, beginning with an ecocritical reading of the ubiquitous London rat. Following Dracula, popular London gothic has been overrun, from the blunt horror-schlock of James Herbert’s 1970s Rats series to China Miéville’s King Rat. Maud Ellman’s elegant discussion of the modernist rat as a protean figure associated with a ‘panoply of fears and fetishes’, underlines how the rat has always featured in anti-urban discourse: as part of racist representations of immigration; as an expression of fear of disease and poverty; or through a quasi-supernatural anxiety about their indestructible and illimitable nature which makes them a staple feature of post-apocalyptic landscapes. Even so, the London rat is a rather more mundane manifestation of urban eco-gothic than the ‘city wilderness’ metaphors common to representations of New York or Los Angles as identified by eco-critic Andrew White. London’s gothic noses its way out through cracks in the pavements, grows from seeds in suburban gardens or accumulates through the steady drip of rainwater. However, I will suggest, in texts such as Maggie Gee’s The Flood and P. D. James’ Children of Men, London eco-gothic becomes less local and familiar as it responds to global environmental crisis with more dramatic tales of minatorial nature.
Resumo:
Lesions involving the anterior thalamic nuclei stopped immediate early gene (IEG) activity in specific regions of the rat retrosplenial cortex, even though there were no apparent cytoarchitectonic changes. Discrete anterior thalamic lesions were made either by excitotoxin (Experiment 1) or radiofrequency (Experiment 2) and, following recovery, the rats foraged in a radial-arm maze in a novel room. Measurements made 6-12 weeks postsurgery showed that, in comparison with surgical controls, the thalamic lesions produced the same, selective patterns of Fos changes irrespective of method. Granular (caudal granular cortex and rostral granular cortex), but not dysgranular (dysgranular cortex), retrosplenial cortex showed a striking loss of Fos-positive cells. While a loss of between 79 and 89% of Fos-positive cells was found in the superficial laminae, the deeper layers appeared normal. In Experiments 3 and 4, rats 9-10 months postsurgery were placed in an activity box for 30 min. Anterior thalamic lesions (Experiment 3) led to a pronounced IEG decrease of both Fos and zif268 throughout the retrosplenial cortex that now included the dysgranular area. These IEG losses were found even though the same regions appeared normal using standard histological techniques. Lesions of the postrhinal cortex (Experiment 4) did not bring about a loss of retrosplenial IEG activity even though this region is also reciprocally connected with the retrosplenial cortex. This selective effect of anterior thalamic damage upon retrosplenial activity may both amplify the disruptive effects of anterior thalamic lesions and help to explain the posterior cingulate hypoactivity found in Alzheimer's disease.
Resumo:
Activity of the immediate early gene c-fos was compared in rats with neurotoxic lesions of the anterior thalamic nuclei and in surgical controls. Fos levels were measured after rats had been placed in a novel room and allowed to run up and down preselected arms of a radial maze. An additional control group showed that in normal rats, this exposure to a novel room leads to a Fos increase in a number of structures, including the anterior thalamic nuclei and hippocampus. In contrast, rats with anterior thalamic lesions were found to have significantly less Fos-positive cells in an array of sites, including the hippocampus (dorsal and ventral), retrosplenial cortex, anterior cingulate cortex, and prelimbic cortex. These results show that anterior thalamic lesions disrupt multiple limbic brain regions, producing hypoactivity in sites associated in rats with spatial memory. Because many of the same sites are implicated in memory processes in humans (e.g., the hippocampus and retrosplenial cortex), this hypoactivity might contribute to diencephalic amnesia.