977 resultados para Automatos finitos
Optimización de cimentaciones directas de medianería y esquina mediante modelos de elementos finitos
Resumo:
Existe un amplio catálogo de posibles soluciones para resolver la problemática de las zapatas de medianería así como, por extensión, las zapatas de esquina como caso particular de las anteriores. De ellas, las más habitualmente empleadas en estructuras de edificación son, por un lado, la utilización de una viga centradora que conecta la zapata de medianería con la zapata del pilar interior más próximo y, por otro, la colaboración de la viga de la primera planta trabajando como tirante. En la primera solución planteada, el equilibrio de la zapata de medianería y el centrado de la respuesta del terreno se consigue gracias a la colaboración del pilar interior con su cimentación y al trabajo a flexión de la viga centradora. La modelización clásica considera que se logra un centrado total de la reacción del terreno, con distribución uniforme de las tensiones de contacto bajo ambas zapatas. Este planteamiento presupone, por tanto, que la viga centradora logra evitar cualquier giro de la zapata de medianería y que el pilar puede, por ello, considerarse perfectamente empotrado en la cimentación. En este primer modelo, el protagonismo fundamental recae en la viga centradora, cuyo trabajo a flexión conduce frecuentemente a unas escuadrías y a unas cuantías de armado considerables. La segunda solución, plantea la colaboración de la viga de la primera planta, trabajando como tirante. De nuevo, los métodos convencionales suponen un éxito total en el mecanismo estabilizador del tirante, que logra evitar cualquier giro de la zapata de medianería, dando lugar a una distribución de tensiones también uniforme. Los modelos convencionales existentes para el cálculo de este tipo de cimentaciones presentan, por tanto, una serie de simplificaciones que permiten el cálculo de las mismas, por medios manuales, en un tiempo razonable, pero presentan el inconveniente de su posible alejamiento del comportamiento real de la cimentación, con las consecuencias negativas que ello puede suponer en el dimensionamiento de estos elementos estructurales. La presente tesis doctoral desarrolla un contraste de los modelos convencionales de cálculo de cimentaciones de medianería y esquina, mediante un análisis alternativo con modelos de elementos finitos, con el objetivo de poner de manifiesto las diferencias entre los resultados obtenidos con ambos tipos de modelización, analizar cuáles son las variables que más influyen en el comportamiento real de este tipo de cimentaciones y proponer un nuevo modelo de cálculo, de tipo convencional, más ajustado a la realidad. El proceso de investigación se desarrolla mediante una etapa experimental virtual que utiliza como modelo un pórtico tipo de edificación, ortogonal, de hormigón armado, con dos vanos y número variable de plantas. Tras identificar el posible giro de la cimentación como elemento clave en el comportamiento de las zapatas de medianería y de esquina, se adoptan como variables de estudio aquellas que mayor influencia puedan tener sobre el citado giro de las zapatas y sobre la rigidez del conjunto del elemento estructural. Así, se han estudiado luces de 3 m a 7 m, diferente número de plantas desde baja+1 hasta baja+4, resistencias del terreno desde 100 kN/m2 hasta 300 kN/m2, relaciones de forma de la zapata de medianería de 1,5 : 1 y 2 : 1, aumento y reducción de la cuantía de armado de la viga centradora y variación del canto de la viga centradora desde el mínimo canto compatible con el anclaje de la armadura de los pilares hasta un incremento del 75% respecto del citado canto mínimo. El conjunto de pórticos generados al aplicar las variables indicadas, se ha calculado tanto por métodos convencionales como por el método de los elementos finitos. Los resultados obtenidos ponen de manifiesto importantes discrepancias entre ambos métodos que conducen a importantes diferencias en el dimensionamiento de este tipo de cimentaciones. El empleo de los métodos tradicionales da lugar, por un lado, a un sobredimensionamiento de la armadura de la viga centradora y, por otro, a un infradimensionamiento, tanto del canto de la viga centradora, como del tamaño de la zapata de medianería y del armado de la viga de la primera planta. Finalizado el análisis y discusión de resultados, la tesis propone un nuevo método alternativo, de carácter convencional y, por tanto, aplicable a un cálculo manual en un tiempo razonable, que permite obtener los parámetros clave que regulan el comportamiento de las zapatas de medianería y esquina, conduciendo a un dimensionamiento más ajustado a las necesidades reales de este tipo de cimentación. There is a wide catalogue of possible solutions to solve the problem of party shoes and, by extension, corner shoes as a special case of the above. From all of them, the most commonly used in building structures are, on one hand, the use of a centering beam that connects the party shoe with the shoe of the nearest interior pillar and, on the other hand, the collaboration of the beam of the first floor working as a tie rod. In the first proposed solution, the balance of the party shoe and the centering of the ground response is achieved thanks to the collaboration of the interior pillar with his foundation along with the bending work of the centering beam. Classical modeling considers that a whole centering of the ground reaction is achieved, with uniform contact stress distribution under both shoes. This approach to the issue presupposes that the centering beam manages to avoid any rotation of the party shoe, so the pillar can be considered perfectly embedded in the foundation. In this first model, the leading role lies in the centering beam, whose bending work usually leads to important section sizes and high amounts of reinforced. The second solution, consideres the collaboration of the beam of the first floor, working as tie rod. Again, conventional methods involve a total success in the stabilizing mechanism of the tie rod, that manages to avoid any rotation of the party shoe, resulting in a stress distribution also uniform. Existing conventional models for calculating such foundations show, therefore, a series of simplifications which allow calculation of the same, by manual means, in a reasonable time, but have the disadvantage of the possible distance from the real behavior of the foundation, with the negative consequences this could bring in the dimensioning of these structural elements. The present thesis develops a contrast of conventional models of calculation of party and corner foundations by an alternative analysis with finite element models with the aim of bring to light the differences between the results obtained with both types of modeling, analysis which are the variables that influence the real behavior of this type of foundations and propose a new calculation model, conventional type, more adjusted to reality. The research process is developed through a virtual experimental stage using as a model a typical building frame, orthogonal, made of reinforced concrete, with two openings and variable number of floors. After identifying the possible spin of the foundation as the key element in the behavior of the party and corner shoes, it has been adopted as study variables, those that may have greater influence on the spin of the shoes and on the rigidity of the whole structural element. So, it have been studied lights from 3 m to 7 m, different number of floors from lower floor + 1 to lower floor + 4, máximum ground stresses from 100 kN/m2 300 kN/m2, shape relationships of party shoe 1,5:1 and 2:1, increase and decrease of the amount of reinforced of the centering beam and variation of the height of the centering beam from the minimum compatible with the anchoring of the reinforcement of pillars to an increase of 75% from the minimum quoted height. The set of frames generated by applying the indicated variables, is calculated both by conventional methods such as by the finite element method. The results show significant discrepancies between the two methods that lead to significant differences in the dimensioning of this type of foundation. The use of traditional methods results, on one hand, to an overdimensioning of the reinforced of the centering beam and, on the other hand, to an underdimensioning, both the height of the centering beam, such as the size of the party shoe and the reinforced of the beam of the first floor. After the analysis and discussion of results, the thesis proposes a new alternative method, conventional type and, therefore, applicable to a manual calculation in a reasonable time, that allows to obtain the key parameters that govern the behavior of party and corner shoes, leading to a dimensioning more adjusted to the real needings of this type of foundation.
Resumo:
La frecuencia con la que se producen explosiones sobre edificios, ya sean accidentales o intencionadas, es reducida, pero sus efectos pueden ser catastróficos. Es deseable poder predecir de forma suficientemente precisa las consecuencias de estas acciones dinámicas sobre edificaciones civiles, entre las cuales las estructuras reticuladas de hormigón armado son una tipología habitual. En esta tesis doctoral se exploran distintas opciones prácticas para el modelado y cálculo numérico por ordenador de estructuras de hormigón armado sometidas a explosiones. Se emplean modelos numéricos de elementos finitos con integración explícita en el tiempo, que demuestran su capacidad efectiva para simular los fenómenos físicos y estructurales de dinámica rápida y altamente no lineales que suceden, pudiendo predecir los daños ocasionados tanto por la propia explosión como por el posible colapso progresivo de la estructura. El trabajo se ha llevado a cabo empleando el código comercial de elementos finitos LS-DYNA (Hallquist, 2006), desarrollando en el mismo distintos tipos de modelos de cálculo que se pueden clasificar en dos tipos principales: 1) modelos basados en elementos finitos de continuo, en los que se discretiza directamente el medio continuo mediante grados de libertad nodales de desplazamientos; 2) modelos basados en elementos finitos estructurales, mediante vigas y láminas, que incluyen hipótesis cinemáticas para elementos lineales o superficiales. Estos modelos se desarrollan y discuten a varios niveles distintos: 1) a nivel del comportamiento de los materiales, 2) a nivel de la respuesta de elementos estructurales tales como columnas, vigas o losas, y 3) a nivel de la respuesta de edificios completos o de partes significativas de los mismos. Se desarrollan modelos de elementos finitos de continuo 3D muy detallados que modelizan el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con un modelo constitutivo del hormigón CSCM (Murray et al., 2007), que tiene un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura. El acero se representa con un modelo constitutivo elastoplástico bilineal con rotura. Se modeliza la geometría precisa del hormigón mediante elementos finitos de continuo 3D y cada una de las barras de armado mediante elementos finitos tipo viga, con su posición exacta dentro de la masa de hormigón. La malla del modelo se construye mediante la superposición de los elementos de continuo de hormigón y los elementos tipo viga de las armaduras segregadas, que son obligadas a seguir la deformación del sólido en cada punto mediante un algoritmo de penalización, simulando así el comportamiento del hormigón armado. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF de continuo. Con estos modelos de EF de continuo se analiza la respuesta estructural de elementos constructivos (columnas, losas y pórticos) frente a acciones explosivas. Asimismo se han comparado con resultados experimentales, de ensayos sobre vigas y losas con distintas cargas de explosivo, verificándose una coincidencia aceptable y permitiendo una calibración de los parámetros de cálculo. Sin embargo estos modelos tan detallados no son recomendables para analizar edificios completos, ya que el elevado número de elementos finitos que serían necesarios eleva su coste computacional hasta hacerlos inviables para los recursos de cálculo actuales. Adicionalmente, se desarrollan modelos de elementos finitos estructurales (vigas y láminas) que, con un coste computacional reducido, son capaces de reproducir el comportamiento global de la estructura con una precisión similar. Se modelizan igualmente el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con el modelo constitutivo del hormigón EC2 (Hallquist et al., 2013), que también presenta un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura, y se usa en elementos finitos tipo lámina. El acero se representa de nuevo con un modelo constitutivo elastoplástico bilineal con rotura, usando elementos finitos tipo viga. Se modeliza una geometría equivalente del hormigón y del armado, y se tiene en cuenta la posición relativa del acero dentro de la masa de hormigón. Las mallas de ambos se unen mediante nodos comunes, produciendo una respuesta conjunta. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF estructurales. Con estos modelos de EF estructurales se simulan los mismos elementos constructivos que con los modelos de EF de continuo, y comparando sus respuestas estructurales frente a explosión se realiza la calibración de los primeros, de forma que se obtiene un comportamiento estructural similar con un coste computacional reducido. Se comprueba que estos mismos modelos, tanto los modelos de EF de continuo como los modelos de EF estructurales, son precisos también para el análisis del fenómeno de colapso progresivo en una estructura, y que se pueden utilizar para el estudio simultáneo de los daños de una explosión y el posterior colapso. Para ello se incluyen formulaciones que permiten considerar las fuerzas debidas al peso propio, sobrecargas y los contactos de unas partes de la estructura sobre otras. Se validan ambos modelos con un ensayo a escala real en el que un módulo con seis columnas y dos plantas colapsa al eliminar una de sus columnas. El coste computacional del modelo de EF de continuo para la simulación de este ensayo es mucho mayor que el del modelo de EF estructurales, lo cual hace inviable su aplicación en edificios completos, mientras que el modelo de EF estructurales presenta una respuesta global suficientemente precisa con un coste asumible. Por último se utilizan los modelos de EF estructurales para analizar explosiones sobre edificios de varias plantas, y se simulan dos escenarios con cargas explosivas para un edificio completo, con un coste computacional moderado. The frequency of explosions on buildings whether they are intended or accidental is small, but they can have catastrophic effects. Being able to predict in a accurate enough manner the consequences of these dynamic actions on civil buildings, among which frame-type reinforced concrete buildings are a frequent typology is desirable. In this doctoral thesis different practical options for the modeling and computer assisted numerical calculation of reinforced concrete structures submitted to explosions are explored. Numerical finite elements models with explicit time-based integration are employed, demonstrating their effective capacity in the simulation of the occurring fast dynamic and highly nonlinear physical and structural phenomena, allowing to predict the damage caused by the explosion itself as well as by the possible progressive collapse of the structure. The work has been carried out with the commercial finite elements code LS-DYNA (Hallquist, 2006), developing several types of calculation model classified in two main types: 1) Models based in continuum finite elements in which the continuous medium is discretized directly by means of nodal displacement degrees of freedom; 2) Models based on structural finite elements, with beams and shells, including kinematic hypothesis for linear and superficial elements. These models are developed and discussed at different levels: 1) material behaviour, 2) response of structural elements such as columns, beams and slabs, and 3) response of complete buildings or significative parts of them. Very detailed 3D continuum finite element models are developed, modeling mass concrete and reinforcement steel in a segregated manner. Concrete is represented with a constitutive concrete model CSCM (Murray et al., 2007), that has an inelastic behaviour, with different tension and compression response, hardening, cracking and compression damage and failure. The steel is represented with an elastic-plastic bilinear model with failure. The actual geometry of the concrete is modeled with 3D continuum finite elements and every and each of the reinforcing bars with beam-type finite elements, with their exact position in the concrete mass. The mesh of the model is generated by the superposition of the concrete continuum elements and the beam-type elements of the segregated reinforcement, which are made to follow the deformation of the solid in each point by means of a penalty algorithm, reproducing the behaviour of reinforced concrete. In this work these models will be called continuum FE models as a simplification. With these continuum FE models the response of construction elements (columns, slabs and frames) under explosive actions are analysed. They have also been compared with experimental results of tests on beams and slabs with various explosive charges, verifying an acceptable coincidence and allowing a calibration of the calculation parameters. These detailed models are however not advised for the analysis of complete buildings, as the high number of finite elements necessary raises its computational cost, making them unreliable for the current calculation resources. In addition to that, structural finite elements (beams and shells) models are developed, which, while having a reduced computational cost, are able to reproduce the global behaviour of the structure with a similar accuracy. Mass concrete and reinforcing steel are also modeled segregated. Concrete is represented with the concrete constitutive model EC2 (Hallquist et al., 2013), which also presents an inelastic behaviour, with a different tension and compression response, hardening, compression and cracking damage and failure, and is used in shell-type finite elements. Steel is represented once again with an elastic-plastic bilineal with failure constitutive model, using beam-type finite elements. An equivalent geometry of the concrete and the steel is modeled, considering the relative position of the steel inside the concrete mass. The meshes of both sets of elements are bound with common nodes, therefore producing a joint response. These models will be called structural FE models as a simplification. With these structural FE models the same construction elements as with the continuum FE models are simulated, and by comparing their response under explosive actions a calibration of the former is carried out, resulting in a similar response with a reduced computational cost. It is verified that both the continuum FE models and the structural FE models are also accurate for the analysis of the phenomenon of progressive collapse of a structure, and that they can be employed for the simultaneous study of an explosion damage and the resulting collapse. Both models are validated with an experimental full-scale test in which a six column, two floors module collapses after the removal of one of its columns. The computational cost of the continuum FE model for the simulation of this test is a lot higher than that of the structural FE model, making it non-viable for its application to full buildings, while the structural FE model presents a global response accurate enough with an admissible cost. Finally, structural FE models are used to analyze explosions on several story buildings, and two scenarios are simulated with explosive charges for a full building, with a moderate computational cost.
Determinación del estado metabólico de pacientes con diabetes gestacional mediante autómatas finitos
Resumo:
Los nuevos criterios de diagnóstico de la diabetes gestacional recomendados por la IADPSGC disminuyen los efectos adversos de la hiperglucemia tanto en la madre como en el recién nacido, pero su aplicación supondría un aumento de la prevalencia llegando a triplicar el número de casos actual. Para que los Servicios de Endocrinología y Nutrición puedan hacer frente a la carga que supondría este aumento de prevalencia es necesario emplear nuevos procesos asistenciales que incluyan el uso de las TICs. Este trabajo presenta una herramienta de análisis automático de datos de monitorización que determina el estado metabólico de las pacientes con diabetes gestacional a partir de sus datos de glucemia, dieta y cetonuria. Su diseño se basa en dos autómatas finitos, uno para el análisis de la glucemia y de la dieta y el otro para el análisis de la cetonuria. La salida de ambos autómatas se combina para determinar el estado metabólico de la paciente a lo largo del tiempo. La herramienta se ha evaluado con datos retrospectivos de 25 pacientes pertenecientes al Hospital Parc Taulí de Sabadell comparando los 1288 estados metabólicos resultantes con los 47 ajustes de terapia realizados por el equipo médico. Se observó que el 91,49% de los cambios de tratamiento coincidieron con estados metabólicos deficientes determinados por la herramienta de análisis. La herramienta ayuda a diferenciar pacientes complejas que requieren una evaluación exhaustiva y un ajuste de terapia de las que tienen buen control metabólico y no necesitan ser evaluadas por el personal médico.
Resumo:
El presente trabajo denominado “Modelo simplificado de neumático de automóvil en elementos finitos para análisis transitorio de las estructuras de los vehículos” ha sido elaborado en la cátedra de Transportes de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. Su principal objetivo es el modelado y estudio de un neumático mediante el programa de elementos finitos Ansys, con el fin de obtener datos fiables acerca de su comportamiento bajo distintas situaciones. Para ello, en primer lugar se han estudiado los distintos componentes que conforman los neumáticos, poniendo especial énfasis en los materiales, que son de vital importancia para el desarrollo del trabajo. Posteriormente, se ha analizado el fundamento matemático que subyace en los programas comerciales de elementos finitos, adquiriendo una mayor seguridad en el uso de éstos, así como un mejor conocimiento de las limitaciones que presentan. Básicamente, el método matemático de los elementos finitos (MEF) consiste en la discretización de problemas continuos para resolver problemas complejos, algo que por los métodos tradicionales sería inabordable con ese grado de precisión debido a la cantidad de variables manejadas. Es ampliamente utilizado hoy en día, y cada vez más, para resolver problemas de distintas disciplinas de la ingeniería como la Mecánica del Sólido, la Mecánica de Fluidos o el Electromagnetismo. Por otro lado, como los neumáticos son un sistema complejo, el estudio de su comportamiento ha supuesto y supone un desafío importante tanto para los propios fabricantes, como para las marcas de vehículos y, en el ámbito de este proyecto, para el equipo Upm Racing. En este Trabajo Fin de Grado se han investigado los distintos modelos de neumático que existen, los cuales según su fundamento matemático pueden ser clasificados en: - Modelos analíticos - Modelos empíricos - Modelos de elementos finitos Con la intención de desarrollar un modelo novedoso de elementos finitos, se ha puesto especial hincapié en conocer las distintas posibilidades para el modelizado de neumáticos, revisando una gran cantidad de publicaciones llevadas a cabo en los ámbitos académico y empresarial. Después de toda esta fase introductoria y de recogida de información se ha procedido a la realización del modelo. Éste tiene tres fases claramente diferenciadas que son: - Pre-procesado - Solución - Post-procesado La fase de pre-procesado comprende toda la caracterización del modelo real al modelo matemático. Para ello es necesario definir los materiales, la estructura de los refuerzos, la presión del aire, la llanta o las propiedades del contacto neumático-suelo. Además se lleva a cabo el mallado del modelo, que es la discretización de dicho modelo para después ser resuelto por los algoritmos del programa. Este mallado es sumamente importante puesto que en problemas altamente no-lineales como éste, una malla no adecuada puede dar lugar a conflictos en la resolución de los sistemas de ecuaciones, originando errores en la resolución. Otro aspecto que se ha de incluir en esta fase es la definición de las condiciones de contorno, que son aquellas condiciones impuestas al sistema que definen el estado inicial del éste. Un ejemplo en resolución de estructuras podría ser la imposición de giros y desplazamientos nulos en el extremo de una viga encontrarse empotrado en este punto. La siguiente fase es la de solución del modelo. En ella se aplican las cargas que se desean al sistema. Las principales que se han llevado a cabo han sido: desplazamientos del eje del neumático, rodadura del neumático con aceleración constante y rodadura del neumático con velocidad constante. La última fase es la de post-procesado. En esta etapa se analizan los resultados proporcionados por la resolución con el fin de obtener los datos de comportamiento del neumático que se deseen. Se han estudiado principalmente tres variables que se consideran de suma importancia: - Rigidez radial estática - Características de la huella de contacto - Coeficiente de resistencia a la rodadura Seguidamente, se presentan las conclusiones generales de estos resultados, reflexionando sobre los valores obtenidos, así como sobre los problemas surgidos durante la realización del trabajo. Además, se realiza una valoración de los impactos que puede suponer a nivel económico, social y medioambiental. Por último, se ha elaborado la planificación y presupuesto del proyecto para plasmar los tiempos de trabajo y sus costos. Además, se han propuesto líneas futuras con las que avanzar y/o completar este trabajo.
Resumo:
La mayoría de las estructuras construidas actualmente están constituidas por hormigón armado, el cual, a pesar de poseer una gran resistencia, está expuesto a múltiples amenazas. Una de ellas, y de las que más preocupa a la sociedad actualmente, son los posibles ataques terroristas como impactos o colocación de explosivos en las proximidades de las estructuras o en el interior de las mismas. Por ello, cada vez más se está mostrando un gran interés en el comportamiento de la estructura y sus diferentes componentes para poder prevenir cualquier tipo de daño. Con este fin, el presente proyecto aborda el estudio de un caso de colapso de estructura sometida a una carga explosiva. El estudio y la modelización del hormigón armado presenta un gran reto debido a los múltiples factores que definen su comportamiento, marcadamente no lineal cuando se producen en él grandes deformaciones. Se ha procedido a la realización del estudio de una estructura porticada de dos plantas, utilizando diferentes técnicas de simulación mediante el programa de elementos finitos LS-DYNA. En concreto se han empleado tres modelos diferentes, un modelo de elementos finitos sólidos tridimensionales con materiales segregados (hormigón y acero), un modelo de elementos finitos estructurales (viga, lámina) con material homogeneizado, y un modelo de elementos finitos estructurales con materiales segregados, comparando la evolución del colapso de la estructura tras la demolición de uno de los pilares centrales. Se ha analizado también el desplazamiento y la velocidad de colapso para un punto concreto. Estos resultados han sido comparados con los datos obtenidos de la fase de ensayo del Proyecto SEGTRANS sobre el mismo punto de la estructura. Con todo ello se ha podido determinar la viabilidad de los modelos para el estudio del colapso de la estructura porticada empleada en este trabajo, señalando las ventajas de cada uno de ellos, y la posibilidad de la aplicación de estos modelos para el estudio de la estructura de un edificio completo teniendo en cuenta las limitaciones de los mismos y de los recursos existentes actualmente.
Resumo:
El fenómeno de explosión sobre estructuras de hormigón tiene efectos en muchos casos catastróficos a pesar de su reducida frecuencia. Las edificaciones civiles no suelen estar diseñadas para resistir este tipo de solicitación dinámica, por lo que conviene disponer de una metodología que permita analizar los efectos de las explosiones sobre las mismas. Este trabajo estudia el comportamiento de las estructuras reticuladas de hormigón armado frente a estas acciones, mediante métodos numéricos de elementos finitos lagrangianos con integración explícita en el tiempo. Se analizan de forma realista partes de la estructura como columnas y forjados usando modelos con hormigón y armaduras de forma segregada, pero las limitaciones computacionales los hacen inviables para estructuras completas. Se proponen modelos de elementos lámina y viga debidamente calibrados para obtener una respuesta similar. Se obtienen conclusiones para el uso y calibración de modelos y simulaciones realistas de edificios completos para estudios de seguridad.
Resumo:
Los elementos estructurales empleados en construcción no han sido en general diseñados para soportar acciones impulsivas, como la detonación de artefactos explosivos. Desde el siglo pasado el mundo ha sufrido ataques terroristas en los que en muchos casos se han producido explosiones que causaron víctimas, heridos y la destrucción de las construcciones próximas. Debido a este hecho, instituciones públicas y privadas comenzaron a mostrar interés por el comportamiento de los elementos estructurales que componen sus instalaciones. El hormigón armado es uno de los principales materiales utilizados en las estructuras de obras debido a sus buenas características, cuyo análisis y modelización en deformaciones dinámicas supone un campo de desafíos al que se está prestando gran atención en los últimos años. LS-DYNA® es un programa basado en elementos finitos capaz de simular problemas reales complejos en el que se han desarrollado distintos modelos de hormigón. Tres de esos modelos (K&C, RHT y CSCM) son evaluados con losas de distintos tamaños de mallado de elementos finitos frente a la detonación de 2 kg de TNT situados a 1 m de distancia. Dichos modelos son simulados y se obtienen los valores de las aceleraciones máximas en unos determinados puntos de las losas. Los valores son sometidos a la aplicación del Método GCI (Grid Convergence Index) para una relación de refinamiento de mallado no constante, cuyos resultados se comparan con aquellos registrados en los acelerómetros empleados durante la primera fase de ensayos del Proyecto SEGTRANS. Mediante el análisis de los resultados obtenidos se determina cual es el modelo de material y tamaño de mallado más adecuado que pueda emplearse en un futuro para poder modelar estructuras más complejas y con niveles de explosivo más elevados.
Resumo:
Os cães, por fatores diversos, acabam por apresentar dentes fraturados com ou sem exposição de polpa. Estas fraturas basicamente são identificadas como fraturas recuperáveis não complicadas, recuperáveis complicadas ou irrecuperáveis. As fraturas recuperáveis (localizadas apenas no esmalte e dentina) são tratadas com dentística restauradora. As recuperáveis complicadas (com lesões em esmalte, dentina e exposição do canal radicular) passam por tratamento endodôntico, podendo ser seguidas de restaurações metálicas. Os dentes mais comumente acometidos são os dentes caninos, superiores ou inferiores. Este trabalho em dentes artificiais simulando considerável destruição de sua porção coronal objetivou testar, após a adaptação da restauração metálica fundida, a resistência às fraturas no dente canino. Os dentes artificiais foram padronizados com uma técnica de replicação de raízes artificiais em molde de resina acrílica quimicamente ativada. Oitenta réplicas iguais de resina composta fotopolimerizável, padronizadas em tamanho e forma, foram construídas a partir desta técnica. Antes da reconstrução protética, aplicou-se o tratamento endodôntico, desobturação, preparo do canal radicular e moldagem. Proteticamente, um pino intrarradicular reto e outro curvo, ambos com núcleo para sustentar a coroa metálica fundida foram cimentados na porção coronal de cada raiz-réplica. Os núcleos e coroa metálica foram ambos ferulados ou estojados. Avaliou-se os dois tipos de restauração com pino intrarradicular curvos ou retos cimentados com cimento de fosfato de zinco ou resinoso para identificar o melhor conjunto restaurador. Os testes de resistência biomecânica de 80 raízes-réplicas foram divididos em 4 grupos com 20 corpos de prova para cada um dos grupos. Grupo 1: das raízes-réplicas com pino intrarradicular curvo cimentados com cimento resinoso. Grupo 2: das raízes-réplicas com pino intrarradicular curvo cimentados com cimento de fosfato de zinco. Grupo 3: das raízes-réplicas com pino intrarradicular reto cimentados com cimento resinoso. Grupo 4: das raízes-réplicas com pino intrarradicular reto cimentados com cimento de fosfato de zinco. Estes grupos foram submetidos a teste de força com pré-carga de 1,5 N, com velocidade de avanço constante de 0,05 mm por minuto em ponto pré- determinado (mésio-lateral vestibularizada) até ocorrência de fratura do conjunto ou parte dele em uma Máquina Universal Kratos. Com a avaliação biomecânica e estudo estatístico de Kruskall-Wallis, identificou-se que os dados obtidos não seguiram distribuição normal. Esta diferença mostrou-se com o p<0,05 na interpretação do teste. No caso de dados não paramétricos o post-hoc do Kruskal-Wallis foi o teste de U de Mann-Withney. Paralelamente, um estudo com análise de elementos finitos comparou os resultados obtidos. Não houve diferença significativa sobre o tipo de cimento utilizado ou que favorecesse o uso do pino reto ou do pino curvo, recaindo a escolha para o operador decidir de acordo com a melhor indicação para cada caso clínico
Resumo:
Este trabalho desenvolve e apresenta um modelo tridimensional em elementos finitos de um cabo umbilical do tipo STU (Steel Tube Umbilical) utilizado na extração offshore de petróleo. Tal modelo é utilizado para estudar o carregamento de crushing, que é imposto ao cabo umbilical pelas sapatas do tensionador durante o seu lançamento, de modo a obter de forma detalhada a distribuição de tensões nos componentes do núcleo, com foco nos tubos de aço utilizados para o transporte de fluidos. A metodologia empregada no desenvolvimento do modelo é descrita detalhadamente ao longo do trabalho, de forma que possa vir a ser utilizada no estudo de outras configurações de cabos umbilicais. O modelo elaborado é utilizado (i) como paradigma para a validação de um modelo bidimensional, que visa analisar o mesmo problema de forma mais simples e rápida, e (ii) para o estudo do comportamento das tensões nos tubos de aço na região de transição de entrada/saída da sapata. Na comparação entre os modelos bi e tridimensional, o trabalho conclui pela validade do modelo bidimensional na avaliação das tensões nos tubos de aço resultantes do carregamento de crushing, na região central do cabo. O estudo realizado na região de transição de entrada/saída da sapata permitiu verificar que ocorre um aumento dos níveis de tensão nos tubos de aço nessas regiões de transição, com redistribuição do campo de tensões após plastificação.
Resumo:
O objetivo desse trabalho foi avaliar o processo de formação do cavaco durante o torneamento utilizando simulação numérica pelo método dos elementos finitos. Para realizar o estudo foram definidos dois tipos de aços inoxidáveis austeníticos, um com matriz metálica sem a presença significativa de inclusões, do tipo ABNT 304, e outro com a presença de inclusões não metálicas, do tipo ABNT 303. O estudo foi focado nos mecanismos de formação e ruptura do cavaco, na determinação das forças de usinagem, no campo de tensões, deformações, e temperaturas durante o processo, que foram relacionados com aspectos e características da microestrutura do material. Os resultados obtidos foram comparados com as forças de usinagem experimentais, com a espessura e morfologia do cavaco. O desenvolvimento do trabalho, de acordo com a metodologia adotada, foi realizado em diferentes etapas. Inicialmente foi elaborado e aplicado um modelo de simulação da usinagem considerando o material homogêneo. Em outra etapa, foi realizada a modelagem de uma microestrutura submetida a um estado de tensão e deformação semelhante ao encontrado na simulação da usinagem realizada com material homogêneo. Os resultados mostraram que as partículas das inclusões maiores, alongadas, e em maior quantidade aumentam a tensão e a deformação na microestrutura. As elevadas temperaturas obtidas na usinagem dos aços inoxidáveis austeníticos aumentam a ductilidade dos sulfetos, esses se deformam em compressão junto com a matriz, e têm um efeito limitado como agente de redução dos esforços de usinagem. Por outro lado, os sulfetos facilitam a etapa de ruptura do cavaco em tensões trativas, e tendem a se romper facilitando o processo de quebra.
Resumo:
Reinforced concrete creep is a phenomenon of great importance. Despite being appointed as the main cause of several pathologies, its effects are yet considered in a simplified way by the structural designers. In addition to studying the phenomenon in reinforced concrete structures and its current account used in the structural analysis, this paper compares creep strains at simply supported reinforced concrete beams in analytical and in experimental forms with the finite element method (FEM) simulation results. The strains and deflections obtained through the analytical form were calculated with the Brazilian code NBR 6118 (2014) recommendations and the simplified method from CEB-FIP 90 and the experimental results were extracted from tests available in the literature. Finite element simulations are performed using ANSYS Workbench software, using its 3D SOLID 186 elements and the structure symmetry. Analyzes of convergence using 2D PLANE 183 elements are held as well. At the end, it is concluded that FEM analyses are quantitative and qualitative efficient for the estimation of this non-linearity and that the method utilized to obtain the creep coefficients values is sufficiently accurate.
Resumo:
As ligações adesivas têm sido utilizadas em diversas áreas de aplicação. A utilização das juntas adesivas em aplicações industriais tem vindo a aumentar nos últimos anos, por causa das vantagens significativas que apresentam comparativamente com os métodos tradicionais de ligação tais como soldadura, ligações aparafusadas e rebitadas. A redução de peso, redução de concentrações de tensões e facilidade de fabrico são algumas das principais vantagens das ligações adesivas. Devido à crescente utilização das ligações adesivas, torna-se necessário a existência de ferramentas que permitam prever a resistência das juntas com elevada precisão. Assim, para a análise de juntas adesivas, está a ser cada vez mais utilizado o método de Elementos Finitos. Neste âmbito o Método de Elementos Finitos eXtendido (MEFX) perfila-se como um método capaz de prever o comportamento da junta, embora este ainda não esteja convenientemente estudado no que diz respeito à aplicação a juntas adesivas. Neste trabalho é apresentado um estudo experimental e numérico pelo MEFX de juntas de sobreposição dupla, nas quais são aplicados adesivos que variam desde frágeis e rígidos, como o caso do Araldite® AV138, até adesivos mais dúcteis, como o Araldite® 2015 e o Sikaforce® 7888. Foram considerados substratos de alumínio (AW6082-T651) em juntas com diferentes comprimentos de sobreposição, sendo sujeitos a esforços de tração de forma a avaliar o seu desempenho. Na análise numérica foi realizada uma análise da distribuição de tensões na camada adesiva, a previsão da resistência das juntas pelo MEFX segundo critérios de iniciação de dano baseados em tensões e deformações, e ainda um estudo sobre o critério energético de propagação de dano. A análise por MEFX revelou que este método é bastante preciso quando usados os critérios de iniciação de dano MAXS e QUADS, e parâmetro com valor de 1 no critério energético de propagação de dano. Apesar de ser um método pouco estudado na literatura comparativamente com outros, o MEFX apresentou resultados muito satisfatórios.
Resumo:
En este trabajo se realizan simulaciones de excavaciones profundas en suelos de origen aluvial en la ciudad de Sabaneta, mediante el empleo de modelos en elementos finitos integrados por el software PLAXIS® -- Los desplazamientos horizontales son comparados con mediciones de inclinómetros instalados en el trasdós del muro diafragma anclado del proyecto Centro Comercial Mayorca Fase III, localizado en el municipio de Sabaneta, Antioquia -- Finalmente, se concluye acerca de la sensibilidad de los parámetros más relevantes según el modelo constitutivo empleado y la viabilidad en su aplicación para la solución del problema evaluado
Resumo:
En esta tesis doctoral se exponen los fundamentos teóricos necesarios en el diseño de esquemas numéricos de volúmenes finitos para sistemas hiperbólicos no conservativos de una y dos dimensiones. Para el caso unidimensional se repasan los conceptos de esquema camino-conservativo y esquema bien equilibrado, así como la extensión de los esquemas numéricos a alto orden, basados en la reconstrucción de estados. En particular, se presentan los esquemas de tipo PVM (Polynomial Viscosity Matrix), así como diversos esquemas de limitadores de flujo que resultan de la extensión natural del método WAF, utilizando como base algunos esquemas de tipo PVM. Para el caso bidimensional se aborda el diseño de esquemas numéricos camino-conservativos y bien equilibrados de volúmenes finitos para sistemas hiperbólicos no conservativos y su extensión a alto orden, en particular se presenta una reconstrucción de estados de tercer orden compacta y que resulta de la combinación WENO de paraboloides y planos. Se presenta además el desarrollo de métodos numéricos para el sistema de aguas someras bidimensional de una capa. En particular se definen esquemas de primer orden de tipo HLL y FORCE y su extensión a alto orden, un método de limitadores de flujo basado en el esquema HLL-WAF, así como su implementación en arquitecturas de tipo GPU, usando el entorno de programación CUDA. A continuación, se presenta un esquema numérico de orden uno para el sistema de aguas someras de una capa bidimensional en coordenadas esféricas (longitud/latitud), así como la extensión natural del método de limitadores de flujo presentado en el Capítulo 3 a este sistema. Finalmente, se presenta la validación del esquema de limitadores de flujo mediante la simulación de tsunamis reales, y la comparación con datos de campo.