946 resultados para Australian Drinking Water Guidelines
Resumo:
This report contains information about Iowa's public drinking water program for the calendar year 2015. Included in the report are descriptions of Iowa's systems, monitoring and reporting requirements of the systems, and violations incurred during the year. This report meets the federal Safe Drinking Water Act's requirement of an annual report on violations of national primary drinking water regulations by public water supply systems in Iowa.
Resumo:
Audit report on the Iowa Water Pollution Control Works Financing Program and the Iowa Drinking Water Facilities Financing Program, joint programs of the Iowa Finance Authority and the Iowa Department of Natural Resources for the year ended June 30, 2015
Resumo:
This research project was driven by the recurring complaints and concerns voiced in the media by residents living in the Valley area of the community of Happy Valley-Goose Bay, Labrador. Drinking water in this town is supplied by two water treatment plants (a municipality treatment plant and a DND treatment plant), which use raw water from two different sources (groundwater from multiple wells versus surface water from Spring Gulch brook) and use two different processes of drinking-water treatment. In fact, the drinking water supplied in the Valley area has a unique distribution arrangement. To meet demand, the Valley area is served by a blend of treated waters from a storage reservoir (Sandhill reservoir), which is fed by both water treatment plants. Most of the time, treated water from the municipal treatment plant dominates in the mixture. As water travels through the distribution system and household plumbing, specific reactions can occur either in the water itself and/or at the solid–liquid interface at the pipe walls; this is strongly influenced by the physical and chemical characteristics of the water. These reactions can introduce undesirable chemical compounds and/or favor the growth of bacteria in the drinking water, causing the deterioration of the quality of water reaching the consumer taps. In the distribution system in general, these chemical constituents and bacteria may pose potential threats to health or the water’s aesthetic qualities (smell, taste or appearance). Drinking water should be not only safe, but also palatable.
Resumo:
The minimum vital of drinking water for vulnerable people isprotected by the Colombian Constitutional Jurisprudence,locally and nationally. The Constitutional Court has created asolid jurisprudential line on the right to water in relation to thesuspension of water supply service for the customer’s failure topay for the service; this Court has also defined the conditionsnecessary for the companies to refrain from suspending serviceand the minimum amount necessary for survival. Compliance withthese sentences has been limited to the orders pronounced to thebenefit of the company that provides such service, including theexecution of payment agreements for accessing the water supply.The implementation of the free minimum vital of drinking water inColombia has been defined through targeting and requirements thatare set only to benefit market laws, such as payment agreements,except for Bogota that, from the point of view of human rights,has proposed the respect for the minimum vital of drinking waterfor all social strata.
Resumo:
The processing of industry and domestic effluents in wastewater treatment plants reduces the amount of polluted material and forms reusable water and dehydrated sludge. the generation of hazardous municipal sludge can be decreased, as well as the impact on surface and underground water and the risk to human health. The aim this study is to verify the possibility to use sintered sewage sludge as support material after thermal treatment in the production of a filtering material to water supply systems. After thermal treatment the sewage sludge ash was characterized by X-ray fluorescence (XRF), leaching test and water solubilization. Dehydration of sludge was performed by controlled heating at temperatures of 180 degrees C, 350 degrees C, 600 degrees C, 850 degrees C and 1000 degrees C for 3 hours.
Resumo:
International audience
Resumo:
Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 −). The concentration of BrO3 − was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 − adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g−1. The adsorption kinetics of BrO3 − adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.
Resumo:
Modern world suffers from an intense water crisis. Emerging contaminants represent one of the most concerning elements of this issue. Substances, molecules, ions, and microorganisms take part in this vast and variegated class of pollutants, which main characteristic is to be highly resistant to traditional water purification technologies. An intense international research effort is being carried out in order to find new and innovative solutions to this problem, and graphene-based materials are one of the most promising options. Graphene oxide (GO) is a nanostructured material where domains populated by oxygenated groups alternate with interconnected areas of sp2 hybridized carbon atoms, on the surface of a one-atom thick nanosheets. GO can adsorb a great number of molecules and ions on its surface, thanks to the variety of different interactions that it can express, such as hydrogen bonding, p-p stacking, and electrostatic and hydrophobic interaction. These characteristics, added to the high superficial area, make it an optimal material for the development of innovative materials for drinking water remediation. The main concern in the use of GO in this field is to avoid secondary contaminations (i.e. GO itself must not become a pollutant). This issue can be faced through the immobilization of GO onto polymeric substrates, thus developing composite materials. The use of micro/ultrafiltration polymeric hollow fibers as substrates allows the design of adsorptive membranes, meaning devices that can perform filtration and adsorption simultaneously. In this thesis, two strategies for the development of adsorptive membranes were investigated: a core-shell strategy, where hollow fibers are coated with GO, and a coextrusion strategy, where GO is embedded in the polymeric matrix of the fibers. The so-obtained devices were exploited for both fundamental studies (i.e. molecular and ionic behaviour in between GO nanosheets) and real applications (the coextruded material is now at TRL 9).
Resumo:
Contaminants of emerging concern are increasingly detected in the water cycle, with endocrine-disrupting chemicals (EDCs) receiving attention due to their potential to cause adverse health effects even at low concentrations. Although the EU has recently introduced some EDCs into drinking water legislation, most drinking water treatment plants (DWTPs) are not designed to remove EDCs, making their detection and removal in DWTPs an important challenge. The aim of this doctoral project was to investigate hormones and phenolic compounds as suspected EDCs in drinking waters across the Romagna area (Italy). The main objectives were to assess the occurrence of considered contaminants in source and drinking water from three DWTPs, characterize the effectiveness of removal by different water treatment processes, and evaluate the potential biological impact on drinking water and human health. Specifically, a complementary approach of target chemical analysis and effect-based methods was adopted to explore drinking water quality, treatment efficacy, and biological potential. This study found that nonylphenol (NP) was prevalent in all samples, followed by BPA. Sporadic contamination of hormones was found only in source waters. Although the measured EDC concentrations in drinking water did not exceed threshold guideline values, the potential role of DWTPs as an additional source of EDC contamination should be considered. Significant increases in BPA and NP levels were observed during water treatment steps, which were also reflected in estrogenic and mutagenic responses in water samples after the ultrafiltration. This highlights the need to monitor water quality during various treatment processes to improve the efficiency of DWTPs. Biological assessments on finished water did not reveal any bioactivity, except for few treated water samples that exhibited estrogenic responses. Overall, the data emphasize the high quality of produced drinking water and the value of applying integrated chemical analysis and in vitro bioassays for water quality assessment.
Resumo:
The work analyses the tourist water demand in Benidorm, a sun-and-sand destination ranked fourth in Spain by number of visitors, where tourism competes with local residents, nature, agriculture and industrial sectors for scarce water resources. In particular, we have studied the correlation between the water consumption of 83 hotels in Benidorm and their characteristics and services which can impact water use. For this purpose, we have examined the water consumption billed, by the water utility company HIDRAQUA in the period January 2010 - October 2022, to the tourist structures in the municipality of Benidorm, and we have explored the hotels’ features, thanks to the collaboration of the tourism and hotels association HOSBEC. To give a better understanding and contextualization of our analysis we first described explained the of the complex water supply system and the efforts that have been made to reduce the threat posed by the peculiar climate conditions of the region. We saw that the water consumption per guest has slightly decreased in the recent years and that the tourist flux has increased: the global pandemic posed a stop to travels for more than one year, but now both the tourist flux and the tourist water consumption are reaching pre-pandemic level. We found that larger hotels, and in particular the ones opened all the year, that probably tend to offer more water-demanding service with respect to the seasonal ones, have higher water consumption per bed. From the analysis of the role of the different hotel characteristics over the water demand patterns, we found that water use increases with the increase in the hotel category and in the ratio between the surface area of the swimming pool and hotel size (number of beds). Other factors impacting the consumption are the presence of an on-site laundry for washing the hotel linen, the garden, and the implementation of environmental policies for water-saving.
Resumo:
A soil (sandy loam) column leaching study aimed to determine the extent of mobility and co-mobility of Cu, Ni, Zn and dissolved organic matter (DOM) released from a surface-application (equivalent to 50 t ds ha(-1)) of anaerobically-digested sewage sludge. Leaching of DOM through It the soil column was found to be almost un-retarded. Decidedly similar behaviour was exhibited by Ni suggesting that it migrated as organic complexes. Whilst Cu was also found to be leached, significant retardation was evident. However, the importance of DOM in promoting the mobility of both Cu and Ni was evidenced by their lack of mobility when added to the soil column as inorganic forms. The presence of DOM did not prevent Zn from becoming completely adsorbed by the soil solid phase. In relation to WHO drinking water guidelines, only Ni concentrations showed potential environmental significance. due to the relatively poor retention of Ni by the sludge solid phase. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The Lasail mining area (Sultanate of Oman) was contaminated by acid mine drainage during the exploitation and processing of local and imported copper ore and the subsequent deposition of sulphide-bearing waste material into an unsealed tailings dump. In this arid environment, the use of seawater in the initial stages of ore processing caused saline contamination of the fresh groundwater downstream of the tailings dump. After detection of the contamination in the 1980s, different source-controlled remediation activities were conducted including a seepage water collection system and, in 2005, surface sealing of the tailings dump using an HDPE-liner to prevent further infiltration of meteoric water. We have been assessing the benefits of the remediation actions undertaken so far. We present chemical and isotopic (δ18O, δ 2H, 3H) groundwater data from a long-term survey (8–16 years) of the Wadi Suq aquifer along a 28 km profile from the tailings dump to the Gulf of Oman. Over this period, most metal concentrations in the Wadi Suq groundwater decreased below detection limits. In addition, in the first boreholes downstream of the tailings pond, the salinity contamination has decreased by 30 % since 2005. This decrease appears to be related to the surface coverage of the tailings pond, which reduces flushing of the tailings by the sporadic, but commonly heavy, precipitation events. Despite generally low metal concentrations and the decreased salinity, groundwater quality still does not meet the WHO drinking water guidelines in more than 90 % of the Wadi Suq aquifer area. The observations show that under arid conditions, use of seawater for ore processing or any other industrial activity has the potential to contaminate aquifers for decades.
Resumo:
Water is vital to humans and each of us needs at least 1.5 L of safe water a day to drink. Beginning as long ago as 1958 the World Health Organization (WHO) has published guidelines to help ensure water is safe to drink. Focused from the start on monitoring radionuclides in water, and continually cooperating with WHO, the International Standardization Organization (ISO) has been publishing standards on radioactivity test methods since 1978. As reliable, comparable and"fit for purpose" results are an essential requirement for any public health decision based on radioactivity measurements, international standards of tested and validated radionuclide test methods are an important tool for production of such measurements. This paper presents the ISO standards already published that could be used as normative references by testing laboratories in charge of radioactivity monitoring of drinking water as well as those currently under drafting and the prospect of standardized fast test methods in response to a nuclear accident.
Resumo:
This guideline jointly published by The UN Economic and Social Commission for Asia and the Pacific (ESCAP), the UN Economic Commission for Latin America and the Caribbean (ECLAC), and the UN Human Settlements Programme (UN-HABITAT), in partnership with the Urban Design Lab of the Earth Institute, Columbia University, provides practical tools for city planners and decision makers to reform urban planning and infrastructure design according to the principles of eco-efficiency and social inclusiveness. It includes case studies from the Republic of Korea, the Philippines, Japan and Sri Lanka.
Resumo:
Abstract Background A typical purification system that provides purified water which meets ionic and organic chemical standards, must be protected from microbial proliferation to minimize cross-contamination for use in cleaning and preparations in pharmaceutical industries and in health environments. Methodology Samples of water were taken directly from the public distribution water tank at twelve different stages of a typical purification system were analyzed for the identification of isolated bacteria. Two miniature kits were used: (i) identification system (api 20 NE, Bio-Mérieux) for non-enteric and non-fermenting gram-negative rods; and (ii) identification system (BBL crystal, Becton and Dickson) for enteric and non-fermenting gram-negative rods. The efficiency of the chemical sanitizers used in the stages of the system, over the isolated and identified bacteria in the sampling water, was evaluated by the minimum inhibitory concentration (MIC) method. Results The 78 isolated colonies were identified as the following bacteria genera: Pseudomonas, Flavobacterium and Acinetobacter. According to the miniature kits used in the identification, there was a prevalence of isolation of P. aeruginosa 32.05%, P. picketti (Ralstonia picketti) 23.08%, P. vesiculares 12.82%,P. diminuta 11.54%, F. aureum 6.42%, P. fluorescens 5.13%, A. lwoffi 2.56%, P. putida 2.56%, P. alcaligenes 1.28%, P. paucimobilis 1.28%, and F. multivorum 1.28%. Conclusions We found that research was required for the identification of gram-negative non-fermenting bacteria, which were isolated from drinking water and water purification systems, since Pseudomonas genera represents opportunistic pathogens which disperse and adhere easily to surfaces, forming a biofilm which interferes with the cleaning and disinfection procedures in hospital and industrial environments.