999 resultados para At-fault crash


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M-w) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01 degrees and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsoft Windows uses the notion of registry to store all configuration information. The registry entries have associations and dependencies. For example, the paths to executables may be relative to some home directories. The registry being designed with faster access as one of the objectives does not explicitly capture these relations. In this paper, we explore a representation that captures the dependencies more explicitly using shared and unifying variables. This representation, called mRegistry exploits the tree-structured hierarchical nature of the registry, is concept-based and obtained in multiple stages. mRegistry captures intra-block, inter-block and ancestor-children dependencies (all leaf entries of a parent key in a registry put together as an entity constitute a block thereby making the block as the only child of the parent). In addition, it learns the generalized concepts of dependencies in the form of rules. We show that mRegistry has several applications: fault diagnosis, prediction, comparison, compression etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of electromagnetic transients arising in EHV/UHV power networks gives necessary information about the possible stresses on the different network components, which will determine their proper design, limits of operation as well as their pertinent protection strategies. This paper describes the transient analysis of 765 kV EHV transmission system which is a typical expansion in Indian power grid system. Considering various conditions, switching transient and fault transient studies are carried out. A FORTRAN version of EMTP is developed, to study a practical example, then a comparison with the results available in the literature is made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents studies on the use of carbon nanotubes dispersed in an insulating fluid to serve as an automaton for healing open-circuit interconnect faults in integrated circuits. The physics behind the repair mechanism is the electric-field-induced diffusion limited aggregation. On the occurrence of an open fault, the repair is automatically triggered due to the presence of an electric field across the gap. We perform studies on the repair time as a function of the electric field and dispersion concentrations with the above application in mind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. Malleable applications, where the number of processors on which the applications execute can be changed during executions, can make use of their malleability to better tolerate high failure rates. We present AdFT, an adaptive fault tolerance framework for long running malleable applications to maximize application performance in the presence of failures. AdFT framework includes cost models for evaluating the benefits of various fault tolerance actions including checkpointing, live-migration and rescheduling, and runtime decisions for dynamically selecting the fault tolerance actions at different points of application execution to maximize performance. Simulations with real and synthetic failure traces show that our approach outperforms existing fault tolerance mechanisms for malleable applications yielding up to 23% improvement in application performance, and is effective even for petascale systems and beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with line protection challenges experienced in system having substantial wind generation penetration. Two types of WTGU: Doubly Fed (DFIG) and Squirrel Cage (SCIG) Induction Generators are simulated and connected to grid with single circuit transmission line. The paper summarizes analytical investigations carried out on the impedance seen by distance relays by varying fault resistances and grid short circuit MVA, for the protection of such transmission lines during faults. The results are also compared with systems having conventional synchronous machine connected to the grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a multi-class support vector machine (SVMs) approach for locating and diagnosing faults in electric power distribution feeders with the penetration of Distributed Generations (DGs). The proposed approach is based on the three phase voltage and current measurements which are available at all the sources i.e. substation and at the connection points of DG. To illustrate the proposed methodology, a practical distribution feeder emanating from 132/11kV-grid substation in India with loads and suitable number of DGs at different locations is considered. To show the effectiveness of the proposed methodology, practical situations in distribution systems (DS) such as all types of faults with a wide range of varying fault locations, source short circuit (SSC) levels and fault impedances are considered for studies. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted feeder section and the fault impedance. The results demonstrate the feasibility of applying the proposed method in practical in smart grid distribution automation (DA) for fault diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First principles calculations were done to evaluate the lattice parameter, cohesive energy and stacking fault energies of ordered gamma' (Ll(2)) precipitates in superalloys as a function of composition. It was found that addition of Ti and Ta lead to an increase in lattice parameter and decrease in cohesive energy, while Ni antisites had the opposite effect. Ta and Ti addition to stoichiometric Ni3Al resulted in an initial increase in the energies of APB((111)), CSF(111), APB((001)) and SISF(111). However, at higher concentrations, the fault energies decreased. Addition of Ni antisites decreased the energy of all four faults monotonically. A model based on nearest neighbor bonding was used for Ni-3(Al, Ta), Ni-3(Al, Ti) and Ni-3(Al, Ni) pseudo-binary systems and extended to pseudo- ternary Ni-3(Al, Ta, Ni) and Ni-3(Al, Ti, Ni) systems. Recipes were developed for predicting lattice parameters, cohesive energies and fault energies in pseudo- ternary systems on the basis of coefficients derived from simpler pseudobinary systems. The model predictions were found to be in good agreement with first principles calculations for lattice parameters, cohesive energies, and energies of APB((111)) and CSF(111).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile nodes observing correlated data communicate using an insecure bidirectional switch to generate a secret key, which must remain concealed from the switch. We are interested in fault-tolerant secret key rates, i.e., the rates of secret key generated even if a subset of nodes drop out before the completion of the communication protocol. We formulate a new notion of fault-tolerant secret key capacity, and present an upper bound on it. This upper bound is shown to be tight when the random variables corresponding to the observations of nodes are exchangeable. Further, it is shown that one round of interaction achieves the fault-tolerant secret key capacity in this case. The upper bound is also tight for the case of a pairwise independent network model consisting of a complete graph, and can be attained by a noninteractive protocol.