988 resultados para As-cast AZ80 magnesium alloy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behaviours of metal foams greatly depend on their cell topology, including cell shape, cell size etc. as well as relative density and material properties of the cell wall. However, the cell shape effect on the mechanical behaviours of such materials appears to be ignored in previous research. In this paper, both analytic and finite element models are developed and employed to investigate the effect of cell shape on the mechanical behaviour of open-cell magnesium alloy (AZ91) foams under compression, including deformation modes and failure modes. For numerical modelling, both two-dimensional (2-D) and three-dimensional (3-D) finite element models are developed to predict the compressive behaviours of typical open-cell metal foams and capture the deformation modes and failure mechanisms. Two typical cell shapes i.e. cubic and diamond are taken into consideration. To validate these models, the analytic and numerical results are compared to the experimental data. Both the numerical and experimental data indicate that the cell shape significantly affects the compression behaviour of open-cell metal foams. In general, numerical results from the three-dimensional solid-element model show better agreement with the experimental results than those from other finite element models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data is the result of hot deformation tests conducted on magnesium alloy AZ31. It includes stress strain data for a range of deformation conditions and different initial microstructures. It also includes data for the developed grain size and the degree of dynamic recrystallisation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The commercial magnesium alloy AZ31 has been subjected to a range of solution treatment regimes. These have then been extruded and their microstructure, texture, and precipitate populations characterized along with their mechanical properties. During the solution treatment, Mn-enriched particles develop and these remain largely unchanged throughout subsequent processing steps. A direct link between grain size and texture has been found, with coarser-grained specimens showing sharper textures. VPSC modeling has been used to quantify the effect of texture on the tensile yield strength, and it has been found that sharper textures have larger tensile yield strengths. Since coarser grain sizes have reduced Hall–Petch hardening, but have an additional texture-strengthening component, a region on the Hall–Petch plot for tension has been identified in which there is an insensitivity of strength to grain size. This has been quantitatively modeled and a texture-modified Hall–Petch plot for tension has been developed. The Mn-rich particles have also been shown to provide precipitate strengthening to the alloy of up to 40 MPa. The compressive behavior was clearer, with the compressive yield strength being directly correlated to grain size and unaffected by texture or precipitation hardening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different modes of scanning electrochemical mapping (SECM) such as surface generation/tip collection (SG/TC), amperometry, AC-SECM and potentiometry were employed to characterize the active/passive domains, hydrogen gas (H2) evolution and local pH on a corroding surface of AZ31 in simulated biological fluid (SBF). It was found that the main domains of H2 evolution are associated with lower insulating properties of the surface as well as higher local pH. The near surface pH was found to be highly alkaline indicating that, even in a buffered solution such as SBF, the local pH on a corroding AZ31 surface can be significantly different to the bulk pH. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five types of Mg-5Al alloys with different weight percentages of Zn ranging from 0 to 4 wt.% were examined using electrochemical techniques and surface analysis. The electrochemical results indicated that the Mg-5Al alloys containing Zn have a lower corrosion and hydrogen evolution rates than the Mg-5Al based specimens with a decrease of value being observed with the decrease in Zn content. Zn addition induced the precipitation of Mg-Al and Mg-Zn phases in the Mg matrix along with grain refinement and increased an interaction of Zn oxide with Mg and Al products serving as a corrosion barrier. © 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to assess a number of coatings developed for Mg for biomedical applications. The Mg substrates were high-purity (HP) Mg and ME10, an alloy recently developed for improved extrudability. The research utilized the new fishing-line specimen configuration to allow direct comparison to our recent in vivo and in vitro measurements. The in vitro measurements were immersion tests of fishing-line specimens immersed in Nor's solution at 37 °C. Tests of substantial duration are needed because the corrosion rates of uncoated samples are low. Nor's solution is the designation given to Hank's solution through which CO2 is bubbled at a partial pressure of 0.009 atm. In this solution, pH is maintained constant by the interaction of CO2 and the bicarbonate ions in the solution. This is the same buffer as that which maintains the pH of blood. Coatings examined were: (i) an anodization using a bio-friendly alkaline electrolyte consisting of phosphate, borate, and metasilicate, (ii) octyltrimethoxysilane (OSi), (iii) 1,2-bis[triethoxysilyl]ethane (BTSE), (iv) anodization+OSi, and (v) anodization + BTSE. The performance of coated samples was comparable to or better than that of the uncoated samples, and there was a substantially better performance for the ME10 samples after anodization+OSi. Reasons for the various performances are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Mg-5%Zn alloy has been aged to form c-axis rod precipitates which are known to increase strength. Micropillar compression tests were carried out in the precipitate-free and aged samples to investigate the effects of these precipitates on twinning and slip in magnesium alloys. Basal slip, pyramidal slip and {101¯2} twinning were selectively activated by compressing micropillars in the [112¯3], [0 0 0 1] and [112¯0] orientations, respectively. It has been found that precipitation causes moderate hardening of the basal slip system, and also significantly increases the work hardening rate. The compression of [112¯0] initiated twinning, but the present experiments were dominated by twin nucleation, rather than growth. It was found that the effect of precipitation on twin nucleation was negligible. Precipitation had little effect on specimens compressed in the c-axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article proposes a model to predict uniaxial and multiaxial ratcheting life by addressing the three primary parameters that influence failure life: fatigue damage, ratcheting damage and the multiaxial loading path. These three factors are addressed in the present model by (a) the stress amplitude for fatigue damage, (b) mean stress-dependent Goodman equation for ratcheting damage and (c) an inherent weight factor based on average equivalent stress to account for the multiaxial loading. The proposed model requires only two material constants which can be easily determined from uniaxial symmetric stress-controlled fatigue tests. Experimental ratcheting life data collected from the literature for 1025 and 42CrMo steel under multiaxial proportional and nonproportional constant amplitude loading ratcheting with triangular sinusoidal and trapezoidal waveform (i.e. linear, rhombic, circular, elliptical and square stress paths) have shown good agreement with the proposed model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)