963 resultados para Armor, Ancient
Resumo:
The main scope of my PhD is the reconstruction of the large-scale bivalve phylogeny on the basis of four mitochondrial genes, with samples taken from all major groups of the class. To my knowledge, it is the first attempt of such a breadth in Bivalvia. I decided to focus on both ribosomal and protein coding DNA sequences (two ribosomal encoding genes -12s and 16s -, and two protein coding ones - cytochrome c oxidase I and cytochrome b), since either bibliography and my preliminary results confirmed the importance of combined gene signals in improving evolutionary pathways of the group. Moreover, I wanted to propose a methodological pipeline that proved to be useful to obtain robust results in bivalves phylogeny. Actually, best-performing taxon sampling and alignment strategies were tested, and several data partitioning and molecular evolution models were analyzed, thus demonstrating the importance of molding and implementing non-trivial evolutionary models. In the line of a more rigorous approach to data analysis, I also proposed a new method to assess taxon sampling, by developing Clarke and Warwick statistics: taxon sampling is a major concern in phylogenetic studies, and incomplete, biased, or improper taxon assemblies can lead to misleading results in reconstructing evolutionary trees. Theoretical methods are already available to optimize taxon choice in phylogenetic analyses, but most involve some knowledge about genetic relationships of the group of interest, or even a well-established phylogeny itself; these data are not always available in general phylogenetic applications. The method I proposed measures the "phylogenetic representativeness" of a given sample or set of samples and it is based entirely on the pre-existing available taxonomy of the ingroup, which is commonly known to investigators. Moreover, it also accounts for instability and discordance in taxonomies. A Python-based script suite, called PhyRe, has been developed to implement all analyses.
Resumo:
This study poses as its objective the genetic characterization of the ancient population of the Great White shark, Carcharodon carcharias, L.1758, present in the Mediterranean Sea. Using historical evidence, for the most part buccal arches but also whole, stuffed examples from various national museums, research institutes and private collections, a dataset of 18 examples coming from the Mediterranean Sea has been created, in order to increase the informations regarding this species in the Mediterranean. The importance of the Mediterranean provenance derives from the fact that a genetic characterization of this species' population does not exist, and this creates gaps in the knowledge of this species in the Mediterranean. The genetic characterization of the individuals will initially take place by the extraction of the ancient DNA and the analysis of the variations in the sequence markers of the mitochondrial DNA. This approach has allowed the genetic comparison between ancient populations of the Mediterranean and contemporary populations of the same geographical area. In addition, the genetic characterization of the population of white sharks of the Mediterranean, has allowed a genetic comparison with populations from global "hot spots", using published sequences in online databases (NCBI, GenBank). Analyzing the variability of the dataset, both in terms space and time, I assessed the evolutionary relationships of the Mediterranean population of Great Whites with the global populations (Australia/New Zealand, South Africa, Pacific USA, West Atlantic), and the temporal trend of the Mediterranean population variability. This method based on the sequencing of two portions of mitochondrial DNA genes, markers showed us how the population of Great White Sharks in the Mediterranean, is genetically more similar to the populations of the Australia Pacific ocean, American Pacific Ocean, rather than the population of South Africa, and showing also how the population of South Africa is abnormally distant from all other clusters. Interestingly, these results are inconsistent with the results from tagging of this species. In addition, there is evidence of differences between the ancient population of the Mediterranean with the modern one. This differentiation between the ancient and modern population of white shark can be the result of events impacting on this species occurred over the last two centuries.
Resumo:
The thesis moves from the need of understanding how a historical building would behave in case of earthquake and this purpose is strongly linked to the fact that the majority of Italian structures are old ones placed in seismic sites. Primarily an architectural and chronological research is provided in order to figure out how the building has developed in time; then, after the reconstruction of the skeleton of the analyzed element (“Villa i Bossi” in Gragnone, AR), a virtual model is created such that the main walls and sections are tested according to the magnitude of expected seismic events within the reference area. This approach is basically aimed at verifying the structure’s reliability as composed by single units; the latter are treated individually in order to find out all the main critical points where rehabilitation might be needed. Finally the most harmful sections are studied in detail and proper strengthening is advised according to the current know-how.
Resumo:
Since historical times, coastal areas throughout the eastern Mediterranean are exposed to tsunami hazard. For many decades the knowledge about palaeotsunamis was solely based on historical accounts. However, results from timeline analyses reveal different characteristics affecting the quality of the dataset (i.e. distribution of data, temporal thinning backward of events, local periodization phenomena) that emphasize the fragmentary character of the historical data. As an increasing number of geo-scientific studies give convincing examples of well dated tsunami signatures not reported in catalogues, the non-existing record is a major problem to palaeotsunami research. While the compilation of historical data allows a first approach in the identification of areas vulnerable to tsunamis, it must not be regarded as reliable for hazard assessment. Considering the increasing economic significance of coastal regions (e.g. for mass tourism) and the constantly growing coastal population, our knowledge on the local, regional and supraregional tsunami hazard along Mediterranean coasts has to be improved. For setting up a reliable tsunami risk assessment and developing risk mitigation strategies, it is of major importance (i) to identify areas under risk and (ii) to estimate the intensity and frequency of potential events. This approach is most promising when based on the analysis of palaeotsunami research seeking to detect areas of high palaeotsunami hazard, to calculate recurrence intervals and to document palaeotsunami destructiveness in terms of wave run-up, inundation and long-term coastal change. Within the past few years, geo-scientific studies on palaeotsunami events provided convincing evidence that throughout the Mediterranean ancient harbours were subject to strong tsunami-related disturbance or destruction. Constructed to protect ships from storm and wave activity, harbours provide especially sheltered and quiescent environments and thus turned out to be valuable geo-archives for tsunamigenic high-energy impacts on coastal areas. Directly exposed to the Hellenic Trench and extensive local fault systems, coastal areas in the Ionian Sea and the Gulf of Corinth hold a considerably high risk for tsunami events, respectively.Geo-scientific and geoarcheaological studies carried out in the environs of the ancient harbours of Krane (Cefalonia Island), Lechaion (Corinth, Gulf of Corinth) and Kyllini (western Peloponnese) comprised on-shore and near-shore vibracoring and subsequent sedimentological, geochemical and microfossil analyses of the recovered sediments. Geophysical methods like electrical resistivity tomography and ground penetrating radar were applied in order to detect subsurface structures and to verify stratigraphical patterns derived from vibracores over long distances. The overall geochronological framework of each study area is based on radiocarbon dating of biogenic material and age determination of diagnostic ceramic fragments. Results presented within this study provide distinct evidence of multiple palaeotsunami landfalls for the investigated areas. Tsunami signatures encountered in the environs of Krane, Lechaion and Kyllini include (i) coarse-grained allochthonous marine sediments intersecting silt-dominated quiescent harbour deposits and/or shallow marine environments, (ii) disturbed microfaunal assemblages and/or (iii) distinct geochemical fingerprints as well as (iv) geo-archaeological destruction layers and (v) extensive units of beachrock-type calcarenitic tsunamites. For Krane, geochronological data yielded termini ad or post quem (maximum ages) for tsunami event generations dated to 4150 ± 60 cal BC, ~ 3200 ± 110 cal BC, ~ 650 ± 110 cal BC, and ~ 930 ± 40 cal AD, respectively. Results for Lechaion suggest that the harbour was hit by strong tsunami impacts in the 8th-6th century BC, the 1st-2nd century AD and in the 6th century AD. At Kyllini, the harbour site was affected by tsunami impact in between the late 7th and early 4th cent. BC and between the 4th and 6th cent. AD. In case of Lechaion and Kyllini, the final destruction of the harbour facilities also seems to be related to the tsunami impact. Comparing the tsunami signals obtained for each study areas with geo-scientific data from palaeotsunami events from other sites indicates that the investigated harbour sites represent excellent geo-archives for supra-regional mega-tsunamis.
A river runs through it - ancient DNA data on the neolithic populations of the Great Hungarian Plain
Resumo:
This thesis was part of a multidisciplinary research project funded by the German Research Foundation (“Bevölkerungsgeschichte des Karpatenbeckens in der Jungsteinzeit und ihr Einfluss auf die Besiedlung Mitteleuropas”, grant no. Al 287/10-1) aimed at elucidating the population history of the Carpathian Basin during the Neolithic. The Carpathian Basin was an important waypoint on the spread of the Neolithic from southeastern to central Europe. On the Great Hungarian Plain (Alföld), the first farming communities appeared around 6000 cal BC. They belonged to the Körös culture, which derived from the Starčevo-Körös-Criş complex in the northern Balkans. Around 5600 cal BC the Alföld-Linearbandkeramik (ALBK), so called due to its stylistic similarities with the Transdanubian and central European LBK, emerged in the northwestern Alföld. Following a short “classical phase”, the ALBK split into several regional subgroups during its later stages, but did not expand beyond the Great Hungarian Plain. Marking the beginning of the late Neolithic period, the Tisza culture first appeared in the southern Alföld around 5000 cal BC and subsequently spread into the central and northern Alföld. Together with the Herpály and Csőszhalom groups it was an integral part of the late Neolithic cultural landscape of the Alföld. Up until now, the Neolithic cultural succession on the Alföld has been almost exclusively studied from an archaeological point of view, while very little is known about the population genetic processes during this time period. The aim of this thesis was to perform ancient DNA (aDNA) analyses on human samples from the Alföld Neolithic and analyse the resulting mitochondrial population data to address the following questions: is there population continuity between the Central European Mesolithic hunter-gatherer metapopulation and the first farming communities on the Alföld? Is there genetic continuity from the early to the late Neolithic? Are there genetic as well as cultural differences between the regional groups of the ALBK? Additionally, the relationships between the Alföld and the neighbouring Transdanubian Neolithic as well as other European early farming communities were evaluated to gain insights into the genetic affinities of the Alföld Neolithic in a larger geographic context. 320 individuals were analysed for this study; reproducible mitochondrial haplogroup information (HVS-I and/or SNP data) could be obtained from 242 Neolithic individuals. According to the analyses, population continuity between hunter-gatherers and the Neolithic cultures of the Alföld can be excluded at any stage of the Neolithic. In contrast, there is strong evidence for population continuity from the early to the late Neolithic. All cultural groups on the Alföld were heavily shaped by the genetic substrate introduced into the Carpathian Basin during the early Neolithic by the Körös and Starčevo cultures. Accordingly, genetic differentiation between regional groups of the ALBK is not very pronounced. The Alföld cultures are furthermore genetically highly similar to the Transdanubian Neolithic cultures, probably due to common ancestry. In the wider European context, the Alföld Neolithic cultures also highly similar to the central European LBK, while they differ markedly from contemporaneous populations of the Iberian Peninsula and the Ukraine. Thus, the Körös culture, the ALBK and the Tisza culture can be regarded as part of a “genetic continuum” that links the Neolithic Carpathian Basin to central Europe and likely has its roots in the Starčevo -Körös-Criş complex of the northern Balkans.
Resumo:
The application of non-invasive imaging technologies using X-radiation (diagnostic radioentomology, ‘DR’) is demonstrated for the study of amber-entombed social bees. Here, we examine the external and internal morphology of an Early Miocene (Burdigalian) stingless bee (Apinae: Meliponini) from the Dominican Republic using non-destructive X-ray microtomography analysis. The study permits the accurate reconstruction of features otherwise obscured or impossible to visualize without destroying the sample and allows diagnosis of the specimen as a new species, Proplebeia adbita Greco and Engel.
Resumo:
This paper studies the “eye” as a religious phenomenon from the multiple traditions of ancient Egypt compared with rabbinic Judaism in late antiquity using a semiotic approach based upon the theories of Umberto Eco. This method was chosen because the eye is a graphic as well as a linguistic sign which both express religious concepts. Generally, the eye represented an all-seeing and omnipresent divinity. In other words, the god was reduced to an eye, whereby the form of the symbol suggests a meaning to the viewer or religious practitioner. In this manner the eye represented the whole body of a deity in Egyptian and the power of a discerning God in rabbinic texts. By focusing upon the semantic aspect of the eye metaphor in both Egyptian and rabbinic texts two religious traditions of the visually perceivable are analyzed from a semiotic perspective.
Resumo:
Tourists to the archaeological site of Tiwanaku are presented with ancient calendars, of which the Gateway of the Sun is the most important, famous, and beautiful. Arthur Posnansky and other early 20th-century archaeologists claimed that its inscriptions constituted a written calendar. These claims were intimately connected to narratives of Tiwanaku as a central source of knowledge in both pre-Columbian times and the contemporary world. Posnansky presented his interpretation of Tiwanaku’s calendars as a response to the debates of the World Calendar Movement, which in the 1930s was attempting to rationalize the Gregorian calendar. In the Gateway, Posnansky found a uniquely Bolivian response to the international, North Atlantic-dominated scientific community’s search for a rational way to keep time in the world economy. Bolivian intellectuals merged their interest in the indigenous past with their concerns about the role of the modernist Bolivian state in the global system.