978 resultados para Argon sputtering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of argon and nitrogen at their respective boiling points in cylindrical pores of MCM-41 type silica-like adsorbents is studied by means of a non-local density functional theory (NLDFT), which is modified to deal with amorphous solids. By matching the theoretical results of the pore filling pressure versus pore diameter against the experimental data, we arrive at a conclusion that the adsorption branch (rather than desorption) corresponds to the true thermodynamic equilibrium. If this is accepted, we derive the optimal values for the solid–fluid molecular parameters for the system amorphous silica–Ar and amorphous silica–N2, and at the same time we could derive reliably the specific surface area of non-porous and mesoporous silica-like adsorbents, without a recourse to the BET method. This method is then logically extended to describe the local adsorption isotherms of argon and nitrogen in silica-like pores, which are then used as the bases (kernel) to determine the pore size distribution. We test this with a number of adsorption isotherms on the MCM-41 samples, and the results are quite realistic and in excellent agreement with the XRD results, justifying the approach adopted in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the mixture adsorption of ethylene, ethane, nitrogen and argon on graphitized thermal carbon black and in slit pores by means of the Grand Canonical Monte Carlo simulations. Pure component adsorption isotherms on graphitized thermal carbon black are first characterized with the GCMC method, and then mixture simulations are carried out over a wide range of pore width, temperature, pressure and composition to investigate the cooperative and competitive adsorption of all species in the mixture. Results of mixture simulations are compared with the experimental data of ethylene and ethane (Friederich and Mullins, 1972) on Sterling FTG-D5 (homogeneous carbon black having a BET surface area of 13 m(2)/g) at 298 K and a pressure range of 1.3-93 kPa. Because of the co-operative effect, the Henry constant determined by the traditional chromatography method is always greater than that obtained from the volumetric method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the effects of surface mediation on the adsorption behavior of argon at different temperatures on homogeneous graphitized thermal carbon black and on heterogeneous nongraphitized carbon black surface. The grand canonical Monte Carlo (GCMC) simulation is used to study the adsorption, and its performance is tested against a number of experimental data on graphitized thermal carbon black (which is known to be highly homogeneous) that are available in the literature. The surface-mediation effect is shown to be essential in the correct description of the adsorption isotherm because without accounting for that effect the GCMC simulation results are always greater than the experimental data in the region where the monolayer is being completed. This is due to the overestimation of the fluid–fluid interaction between particles in the first layer close to the solid surface. It is the surface mediation that reduces this fluid–fluid interaction in the adsorbed layers, and therefore the GCMC simulation results accounting for this surface mediation that are presented in this paper result in a better description of the data. This surface mediation having been determined, the surface excess of argon on heterogeneous carbon surfaces having solid–fluid interaction energies different from the graphite can be readily obtained. Since the real heterogeneous carbon surface is not the same as the homogeneous graphite surface, it can be described by an area distribution in terms of the well depth of the solid–fluid energy. Assuming a patchwise topology of the surface with patches of uniform well depth of solid–fluid interaction, the adsorption on a real carbon surface can be determined as an integral of the local surface excess of each patch with respect to the differential area. When this is matched against the experimental data of a carbon surface, we can derive the area distribution versus energy and hence the geometrical surface area. This new approach will be illustrated with the adsorption of argon on a nongraphitized carbon at 87.3 and 77 K, and it is found that the GCMC surface area is different from the BET surface area by about 7%. Furthermore, the description of the isotherm in the region of BET validity of 0.06 to 0.2 is much better with our method than with the BET equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the difference between the adsorption of spherical molecule argon (at 87.3 K) and the flexible normal butane (at an equivalent temperature of 150 K) in carbon slit pores. These temperatures are equivalent in the sense that they have the same relative distances between their respective triple points and critical points. Higher equivalent temperatures are also studied (122.67 K for argon and 303 K for n-butane) to investigate the effects of temperature on the 2D-transition in adsorbed density. The Grand Canonical Monte Carlo simulation is used to study the adsorption of these two model adsorbates. Beside the longer computation times involved in the computation of n-butane adsorption, n-butane exhibits many interesting behaviors such as: (i) the onset of adsorption occurs sooner (in terms of relative pressure), (ii) the hysteresis for 2D- and 3D-transitions is larger, (iii) liquid-solid transition is not possible, (iv) 2D-transition occurs for n-butane at 150 K while it does not happen for argon except for pores that accommodate two layers of molecules, (v) the maximum pore density is about four times less than that of argon and (vi) the sieving pore width is slightly larger than that for argon. Finally another feature obtained from the Grand Canonical Monte Carlo (GCMC) simulation is the configurational arrangement of molecules in pores. For spherical argon, the arrangement is rather well structured, while for n-butane the arrangement depends very much on the pore size. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure of MmNi(3.5)(CoAlMn)(1.5)/Mg (here Mm denotes La-rich mischmetal) multi-layer hydrogen storage thin films prepared by direct current magnetron sputtering was investigated by cross-sectional transmission electron microscopy (XTEM). It was shown that the MMM5 layers are composed of two regions: an amorphous region with a thickness of similar to 4nm at the bottom of the layers and a randomly orientated nanocrystallite region on the top of the amorphous region and the Mg layers consist of typical columnar crystallite with their [001] direction nearly parallel to the growth direction. The mechanism for the formation of the above microstructure characteristics in the multi-layer thin films has been proposed. Based on the microstructure feature of the multi-layer films, mechanism for the apparent improvement of hydrogen absorption/desorption kinetics was discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural variation of Norit RI Extra activated carbon, progressively heated at 1373 K, was explored in terms of pore size and pore wall thickness distributions, for various periods of heating time, determined by argon adsorption at 87 K, both using an infinite as well as and finite wall thickness model. The latter approach has recently been developed in our laboratory and has been applied to several virgin carbons. The current results show significant variations in small pore size regions (< 7 angstrom) in association with strong growth of thick walls having at least three carbon sheets, as a result of heat treatment. In particular, shrinkage of the smallest pores due to strong interaction between their opposite walls as well as smoothening of carbon wall surfaces due to an increase in graphitization degree under thermal treatment have been found. Further, the results of pore wall thickness distribution are well corroborated by X-ray diffraction. The results of pore size and pore wall thickness distributions are also shown to be consistent with transmission electron microscopy analyses. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most perfectly structured metal surface observed in practice is that of a field evaporated field-ion microscope specimen. This surface has been characterised by adopting various optical analogue techniques. Hence a relationship has been determined between the structure of a single plane on the surface of a field-ion emitter and the geometry of a binary zone plate. By relating the known focussing properties of such a zone plate to those obtained from the projected images of such planes in a field-ion micrograph, it is possible to extract new information regarding the local magnification of the image. Further to this, it has been shown that the entire system of planes comprising the field-ion imaging surface may be regarded as a moire pattern formed between over-lapping zone plates. The properties of such moire zone plates are first established in an analysis of the moire pattern formed between zone plates on a flat surface. When these ideas are applied to the field-ion image it becomes possible to deduce further information regarding the precise topography of the emitter. It has also become possible to simulate differently proJected field-ion images by overlapping suitably aberrated zone plates. Low-energy ion bombardment is an essential preliminary to much surface research as a means of producing chemically clean surfaces. Hence it is important to know the nature and distribution of the resultant lattice damage, and the extent to which it may be removed by annealing. The field-ion microscope has been used to investigate such damage because its characterisation lies on the atomic scale. The present study is concerned with the in situ sputtering of tungsten emitters using helium, neon, argon and xenon ions with energies in the range 100eV to 1keV, together with observations of the effect of annealing. The relevance of these results to surface cleaning schedules is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A production of low velocity and monoenergetic atomic beams would increase the resolution in spectroscopic studies and many other experiments in atomic physics. Laser Cooling uses the radiation pressure to decelerate and cool atoms. The effusing from a glow discharge metastable argon atomic beam is affected by a counterpropagating laser light tuned to the cycling transition in argon. The Zeeman shift caused by a spatially varying magnetic field compensates for the changing Doppler shift that takes the atoms out of resonance as they decelerated. Deceleration and velocity bunching of atoms to a final velocity that depends on the detuning of the laser relative to a frequency of the transition have been observed. Time-of-Flight (TOF) spectroscopy is used to examine the velocity distribution of the cooled atomic beam. These TOF studies of the laser cooled atomic beam demonstrate the utility of laser deceleration for atomic-beam "velocity selection".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the degree of conversion (DC%) of one experimental and different brands of composite resins light-cured by two light sources (one LED and one argon laser). The percentage of unreacted C = C was determined from the ratio of absorbance intensities of aliphatic C = C (peak at 1637 cm−1) against internal standards before and after curing: aromatic C–C (peak at 1610 cm−1) except for P90, where %C = C bonds was given for C–O–C (883 cm−1) and C–C (1257 cm−1). ANOVA and Tukey’s test revealed no statistically significant difference among Z350 (67.17), Z250 (69.52) and experimental (66.61 ± 2.03) with LED, just among them and Evolu-X (75.51) and P90 (32.05) that showed higher and lower DC%, respectively. For the argon laser, there were no differences among Z250 (70.67), Z350 (69.60), experimental (65.66) and Evolu-X (73, 37), however a significant difference was observed for P90 (36.80), which showed lowest DC%. The light sources showed similar DC%, however the main difference was observed regarding the composite resins. The lowest DC% was observed for the argon laser. P90 showed the lowest DC% for both light-curing sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we analyze the structure of Fe-Ga layers with a Ga content of ∼30 at.% deposited by the sputtering technique under two different regimes. We also studied the correlation between the structure and magnetic behavior of the samples. Keeping the Ar pressure fixed, we modified the flow regime from ballistic to diffusive by increasing the distance between the target and the substrate. X-ray diffraction measurements have shown a lower structural quality when growing in the diffusive flow. We investigated the impact of the growth regime by means of x-ray absorption fine structure (XAFS) measurements and obtained signs of its influence on the local atomic order. Full multiple scattering and finite difference calculations based on XAFS measurements point to a more relevant presence of a disordered A2 phase and of orthorhombic Ga clusters on the Fe-Ga alloy deposited under a diffusive regime; however, in the ballistic sample, a higher presence of D0_3/B2 phases is evidenced. Structural characteristics, from local to long range, seem to determine the magnetic behavior of the layers. Whereas a clear in-plane magnetic anisotropy is observed in the film deposited under ballistic flow, the diffusive sample is magnetically isotropic. Therefore, our experimental results provide evidence of a correlation between flow regime and structural properties and its impact on the magnetic behavior of a rather unexplored compositional region of Fe-Ga compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arctic Ocean and Western Antarctic Peninsula (WAP) are the fastest warming regions on the planet and are undergoing rapid climate and ecosystem changes. Until we can fully resolve the coupling between biological and physical processes we cannot predict how warming will influence carbon cycling and ecosystem function and structure in these sensitive and climactically important regions. My dissertation centers on the use of high-resolution measurements of surface dissolved gases, primarily O2 and Ar, as tracers or physical and biological functioning that we measure underway using an optode and Equilibrator Inlet Mass Spectrometry (EIMS). Total O2 measurements are common throughout the historical and autonomous record but are influenced by biological (net metabolic balance) and physical (temperature, salinity, pressure changes, ice melt/freeze, mixing, bubbles and diffusive gas exchange) processes. We use Ar, an inert gas with similar solubility properties to O2, to devolve distinct records of biological (O2/Ar) and physical (Ar) oxygen. These high-resolution measurements that expose intersystem coupling and submesoscale variability were central to studies in the Arctic Ocean, WAP and open Southern Ocean that make up this dissertation.

Key findings of this work include the documentation of under ice and ice-edge blooms and basin scale net sea ice freeze/melt processes in the Arctic Ocean. In the WAP O2 and pCO2 are both biologically driven and net community production (NCP) variability is controlled by Fe and light availability tied to glacial and sea ice meltwater input. Further, we present a feasibility study that shows the ability to use modeled Ar to derive NCP from total O2 records. This approach has the potential to unlock critical carbon flux estimates from historical and autonomous O2 measurements in the global oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanic rocks recovered from the Japan Sea during ODP Legs 127 and 128 were analyzed by 40Ar-39Ar whole-rock stepwise-heating experiments. All three experiments on samples from Site 795 in the Japan Basin revealed disturbed age spectra, but they are consistent with crystallization ages of 15 to 25 Ma for the samples. At Site 797 in the Yamato Basin, three of the five samples showed plateau ages of 18-19 Ma. At Site 794 in the northern Yamato Basin, three of the five samples revealed concordant age spectra of 20-21 Ma. The radiometric age results are consistent with the estimated ages for the oldest sediments at Site 797 based on the biostratigraphy, but are significantly older than those of the oldest sediments at Site 794. However, the radiometric ages are concordant with previously inferred ages for the formation of the Japan Sea floor based on radiometric age data from dredged igneous rocks from the Japan Sea. The present results indicate that formation of the Japan Sea floor started at least 19-20 Ma ago and give more precise age constraints.