949 resultados para Area in hectare


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7-10/10) prevailed and ice thickness ranged over <0.1-1.6 m covered by <0.1-0.6 m of snow. Air temperatures ranged between -1.8 and -27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0-5 m depth) were not stratified (T=-1.9 to -2.0°C and S=34.2-34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 µg chlorophyll a/l), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2-241.3 and 5.3-16.4 µg/l, respectively, the C/N ratio over 11.2-15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0-1.8 ind/m**2 for Apherusa glacialis, 0-0.7 ind/m**2 for Onisimus spp., and 0-0.8 ind/m**2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181-2,487 ind/m**3 (biomass: 70-2,439 µg C/m**3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34-1,485 ind/m**3), contributing 19-65% to total abundances, followed by copepod nauplii (85-548 ind/m**3) and the cyclopoid copepod Oithona similis (44-262 ind/m**3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mouth area of the North (Severnaya) Dvina River is characterized by a high concentrations of methane in water (from 1.0 to 165.4 µl/l) and bottom sediments (from 14 to 65000 µl/kg), being quite comparable to productive mouth areas of rivers from the temperate zone. Maximum methane concentrations in water and sediments were registered in the delta in segments of channels and branches with low rates of tidal and runoff currents, where domestic and industrial wastewaters are supplied. In the riverine and marine water mixing zone with its upper boundary, locating far into the delta and moving depending on a phase of the tidal cycle, decrease of methane concentration with salinity increase was observed. The prevailing role in formation of the methane concentration level in water of the mouth area pertains to bottom sediments, which is indicated by close correlation between gas concentrations in these two media. Existence of periodicity in variations of methane concentration in river water downstream caused by tidal effects was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submarine gas hydrates are a major global reservoir of the potent greenhouse gas methane. Since current assessments of worldwide hydrate-bound carbon vary by one order of magnitude, new technical efforts are required for improved and accurate hydrate quantifications. Here we present hydrate abundances determined for surface sediments at the high-flux Batumi seep area in the southeastern Black Sea at 840 m water depth using state-of-the art autoclave technology. Pressure sediment cores of up to 2.65 m in length were recovered with an autoclave piston corer backed by conventional gravity cores. Quantitative core degassing yielded volumetric gas/bulk sediment ratios of up to 20.3 proving hydrate presence. The cores represented late glacial to Holocene hemipelagic sediments with the shallowest hydrates found at 90 cmbsf. Calculated methane concentrations in the different cores surpassed methane equilibrium concentrations in the two lowermost lithological Black Sea units sampled. The results indicated hydrate fractions of 5.2% of pore volume in the sapropelic Unit 2 and mean values of 21% pore volume in the lacustrine Unit 3. We calculate that the studied area of ~ 0.5 km**2 currently contains about 11.3 kt of methane bound in shallow hydrates. Episodic detachment and rafting of such hydrates is suggested by a rugged seafloor topography along with variable thicknesses in lithologies. We propose that sealing by hydrate precipitation in coarse-grained deposits and gas accumulation beneath induces detachment of hydrate/sediment chunks. Floating hydrates will rapidly transport methane into shallower waters and potentially to the sea-atmosphere boundary. In contrast, persistent in situ dissociation of shallow hydrates appears unlikely in the near future as deep water warming by about 1.6 °C and/or decrease in hydrostatic pressure corresponding to a sea level drop of about 130 m would be required. Because hydrate detachment should be primarily controlled by internal factors in this area and in similar hydrated settings, it serves as source of methane in shallow waters and the atmosphere which is mainly decoupled from external forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of redistribution of alpha-radioactive isotopes of plutonium, 239,240Pu and 238Pu in coastal ecosystems off the northern Black Sea coast for quantitative characterization of modern radioecological situation in these waters with respect to plutonium was the aim of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.