969 resultados para Antimicrobial multiresistence
Resumo:
The aim of this study was to evaluate the antimicrobial activity of aqueous extracts from fruiting bodies of different isolates of Lentinula edodeson the pathogens Colletotrichum sublineolum, the causal agent of anthracnose in sorghum, and Xanthomonas axonopodispv. passiflorae, the causal agent of bacterial spot in passion fruit. Results showed that the aqueous extracts from isolates LE JAB-K and LE 95/01 significantly reduced C. sublineolumspore germination,while the isolate LE 96/22 was the only one to inhibit the pathogen mycelial growth. However, all L. edodesisolates showed inhibitory effect on C. sublineolumappressorium formation. Regarding X. axonopodispv. passiflorae, the aqueous extracts from all L. edodesisolates significantly reduced the in vitromultiplication of the bacterium. However, antimicrobial activity was lost when the extracts were autoclaved, demonstrating their thermolabile property. The aqueous extract from isolate LE 96/22 was also partially purified by anion exchange chromatography and fraction V exhibited high inhibitory activity on the in vitromycelial growth of C. sublineolum, while the multiplication of X. axonopodispv. passifloraewas inhibited by fractions IV, V and VII. Thus, L. edodesisolates were shown to produce compounds exhibiting antifungal and antibacterial activities against phytopathogens, which are mainly concentrated in fraction V.
Resumo:
Rapid identification and resistance determination of pathogens in clinical specimens is vital for accurate treatment and monitoring of infectious diseases. Antimicrobial drug resistance is increasing globally and healthcare settings are facing this cost-intensive and even life-threatening problem. The incidence of resistant pathogens in Finland has remained relatively steady and manageable at least for the time being. DNA sequencing is the gold standard method for genotyping, mutation analysis, and identification of bacteria. Due to significant cost decrease in recent years, this technique is available to many research and clinical laboratories. Pyrosequencing technique, a rapid real-time DNA sequencing method especially suitable for analyzing fairly short stretches of DNA, was used in this study. Due to its robustness and versatility, pyrosequencing was applied in this study for identification of streptococci and detection of certain mutations causing antimicrobial resistance in different bacteria. Certain streptococcal species such as S. pneumoniae and S. pyogenes are significantly important clinical pathogens. S. pneumoniae causes e.g. pneumonia and otitis media and is one of the most important community-acquired pathogens. S. pyogenes, also known as group A streptococcus, causes e.g. angina and erysipelas. In contrast, the socalled alpha-haemolytic streptococci, such as S. mitis and S. oralis, belong to the normal microbiota, which are regarded to be non-pathogenic and are nearly impossible to identify by phenotypic methods. In this thesis, a pyrosequencing method was developed for identification of streptococcal species based on the 16S rRNA sequences. Almost all streptococcal species could be differentiated from one another by the developed method, including S. pneumoniae from its close relatives S. mitis and S. oralis . New resistance genes and their variants are constantly discovered and reported. In this study, new methods for detecting certain mutations causing macrolide resistance or extended spectrum beta-lactamase (ESBL) phenotype were developed. These resistance detection approaches are not only suitable for surveillance of mechanisms causing antimicrobial resistance but also for routine analysis of clinical samples particularly in epidemic settings. In conclusion, pyrosequencing was found to be an accurate, versatile, cost-effective, and rapid DNA sequencing method that is especially suitable for mutation analysis of short DNA fragments and identification of certain bacteria.
Resumo:
Antimicrobial Resistance in Campylobacter jejuni and Campylobacter coli Campylobacters are a common cause of bacterial gastroenteritis worldwide, with Campylobacter jejuni and C. coli being the most common species isolated in human infections. If antimicrobial treatment is required, the drugs of choice at the moment are the macrolides and fluoroquinolones. In this thesis, the in vitro resistance profiles of the C. jejuni and C. coli strains were evaluated with emphasis on multidrug resistance. The aim was also to evaluate the different resistance mechanisms against the macrolides. Further, the disk diffusion method was compared to agar dilution method and its repeatability was evaluated, since it has been widely used for the susceptibility testing of campylobacters. The results of the present study showed that resistance to the fluoroquinolones is common in strains isolated from Finnish patients, but resistance to the macrolides is still rare. Multidrug resistance was associated with resistance to both ciprofloxacin and erythromycin. Among the available per oral drugs, least resistance was observed to coamoxiclav There was no resistance to the carbapenems. Sitafloxacin and tigecycline were in vitro highly effective towards Campylobacter species. A point mutation A2059G of the 23S rRNA gene was the main mechanism behind the macrolide resistance, whereas the efflux pumps did not seem to play an important role when a strain had A2059G mutation. A five amino acids insertion, which has not been described previously, in the ribosomal protein L22 of one highly-resistant C. jejuni strain without mutation in the 23S rRNA gene was also detected. Concerning the disk diffusion method, there was variation in the repeatability In conclusion, macrolides still appear to be the first-choice alternative for suspected Campylobacter enteritis. The in vitro susceptibilities found suggest that co-amoxiclav might be a candidate for clinical trials on campylobacteriosis, but in life-threatening situations, a carbapenem may be the drug of choice. More studies are needed on whether the disk diffusion test method could be improved or whether all susceptibilities of campylobacters should be done using a MIC based method.
Resumo:
Salmonella serovars isolated from swine are of particular interest not only because of the pathogenic potential for this animal species, but also due to its relevance with regard to public health. On basis of the profile of resistance to antimicrobials, 13 Salmonella strains were selected which belonged to the serovars Muenster (7), Derby (4), Typhimurium (1), and Braenderup (1). They were isolated from healthy swine as well as from the abattoir environment in the state of Rio de Janeiro. All strains of Salmonella were subjected to bacterial conjugation, and the E. coli K12 Nal r Lac+ F standard strain was used as receptor, with the purpose to verify the ability to transfer the resistance marks. Gene transfer phenomenon was detected in seven strains, and except SalmonellaTyphimurium which transconjugated to Sm, Tc and Su, the remaining ones were characterized by transferring mark Su only. By plasmidial analysis of strains used and their respective transconjugants, 63 Kb plasmid was found, which was probably related to S. Typhimurium resistance.
Resumo:
The study was conducted to characterize pheno-genotypically the virulence factors and resistance pattern of Staphylococcus aureus isolates from milk samples of cows with subclinical mastitis. All hemolytic isolates presented beta-hemolysin, and 38% of the non-hemolytic isolates were able to express hemolysins in the presence of a beta-hemolytic strain. The amplification of the coa-gene displayed four different size polymorphisms with about 400 bp, 600 bp, 700 bp and 900 bp. The spaA gene that encodes the IgG-binding region of protein A revealed sizes of 700 bp and 900 bp. The amplification of region X from spaA yielded a single amplicon for each isolate with the prevalent amplicon size being of 180 bp. Amplification of sae gene yielded an amplicon size of 920 bp in 71% of the isolates. Antibiotic resistance pattern revealed that 42% S. aureus were susceptible to all antimicrobials tested. Seven different antibiotic patterns were observed. Our results indicated that 47% and 25% of S. aureus strains exhibited resistance to penicillin and oxacillin respectively. All oxacillin-resistant isolates were mecA-positive.
Resumo:
The present study evaluated the pheno- and genotypical antimicrobial resistance profile of coagulase-negative Staphylococcus (CNS) species isolated from dairy cows milk, specially concerning to oxacillin. Of 100 CNS isolates, the S. xylosus was the prevalent species, followed by S. cohnii, S. hominis, S. capitis and S. haemolyticus. Only 6% were phenotypically susceptible to the antimicrobial agents tested in disk diffusion assay. Penicillin and ampicillin resistance rates were significantly higher than others antimicrobials. Four isolates were positive to mecA gene (4%), all represented by the S. xylosus species. The blaZ gene was detected in 16% of the isolates (16/100). It was noticed that all mecA + were also positive to this gene and the presence of both genes was correlated to phenotypic beta-lactamic resistance. We conclude that CNS species from bovine milk presented significantly distinct antimicrobial resistance profiles, evaluated by phenotypic and genotypic tests, which has implications for treatment and management decisions.
Resumo:
The study aimed to determine the antimicrobial resistance patterns and to identify molecular resistance markers in Staphylococcus spp. (n=210) isolated from small ruminant mastitis in Brazil. The antimicrobial resistance patterns were evaluated by the disk diffusion test and by detection of the presence of mecA, blaZ, ermA, ermB, ermC and msrA genes by PCR. The efflux pump test was performed using ethidium bromide and biofilm production was determined by Congo red agar test along with PCR for detection of the icaD gene. The isolates were most resistant to amoxicillin (50.0%), streptomycin (42.8%), tetracycline (40.4%), lincomycin (39.0%) and erythromycin (33.8%). Pan-susceptibility to all tested drugs was observed in 71 (33.8%) isolates and 41 Staphylococcus isolates were positive for the efflux pump. Although phenotypic resistance to oxacillin was observed in 12.8% of the isolates, none harbored the mecA gene. However, 45.7% of the isolates harbored blaZ indicating that beta-lactamase production was the main mechanism associated with staphylococci resistance to beta-lactams in the present study. The other determinants of resistance to antimicrobial agents ermA, ermB, ermC, and msrA were observed in 1.4%, 10.4%, 16.2%, and 0.9% of the isolates, respectively. In addition, the icaD gen was detected in 32.9% of the isolates. Seventy three isolates (54 from goats and 19 from sheep) were negative for all resistance genes tested and 69 isolates presented two or more resistance genes. Association among blaZ, ermA, ermB, ermC and efflux pump were observed in 17 isolates, 14 of which originated from goats and three from sheep. The data obtained in this study show the resistance of the isolates to beta-lactamics, which may be associated with the use of antimicrobial drugs without veterinary control.
Resumo:
The purpose of this paper was to study the etiology of mastitis, determine the antimicrobial susceptibility profile of Staphylococcus spp. and to identify the risk factors associated with infection in dairy cows in the states of Bahia and Pernambuco, Brazil. From the 2,064 milk samples analyzed, 2.6% were associated with cases of clinical mastitis and 28.2% with subclinical mastitis. In the microbiological culture, Staphylococcus spp. (49.1%) and Corynebacterium spp. (35.3%) were the main agents found, followed by Prototheca spp. (4.6%) and Gram negative bacilli (3.6%). In the antimicrobial susceptibility testing, all 218 Staphylococcus spp. were susceptible to rifampicin and the least effective drug was amoxicillin (32.6%). Multidrug resistance to three or more drugs was observed in 65.6% of Staphylococcus spp. The risk factors identified for mastitis were the extensive production system, not providing feed supplements, teat drying process, not disinfecting the teats before and after milking, and inadequate hygiene habits of the milking workers. The presence of multiresistant isolates in bovine milk demonstrates the importance of the choice and appropriate use of antimicrobial agents. Prophylactic and control measures, including teat antisepsis and best practices for achieving hygienic milking should be established in order to prevent new cases of the disease in herds.
Resumo:
The objective of this study was to evaluate herd management practices and mastitis treatment procedures as risk factors associated with Staphylococcus aureus antimicrobial resistance. For this study, 13 herds were selected to participate in the study to evaluate the association between their management practices and mastitis treatment procedures and in vitro antimicrobial susceptibility. A total of 1069 composite milk samples were collected aseptically from the selected cows in four different periods over two years. The samples were used for microbiological culturing of S. aureus isolates and evaluation of their antimicrobial susceptibility. A total of 756 samples (70.7%) were culture-positive, and S. aureus comprised 27.77% (n=210) of the isolates. The S. aureus isolates were tested using the disk-diffusion susceptibility assay with the following antimicrobials: ampicillin 10mg; clindamycin 2μg; penicillin 1mg; ceftiofur 30μg; gentamicin 10mg; sulfa-trimethoprim 25μg; enrofloxacin 5μg; sulfonamide 300μg; tetracycline 30μg; oxacillin 1mg; cephalothin 30μg and erythromycin 5μg. The variables that were significantly associated with S. aureus resistance were as follows: the treatment of clinical mastitis for ampicillin (OR=2.18), dry cow treatment for enrofloxacin (OR=2.11) and not sending milk samples for microbiological culture and susceptibility tests, for ampicillin (OR=2.57) and penicillin (OR=4.69). In conclusion, the identification of risk factors for S. aureus resistance against various mastitis antimicrobials is an important information that may help in practical recommendations for prudent use of antimicrobial in milk production.
Resumo:
Currently, there is a growing interest in medicinal plants, because of an increased demand for alternate therapies. In this study, the antimicrobial activity and toxicity of the essential oil of Lippia origanoides (L. origanoides) were investigated. The essential oil of L. origanoides was extracted by steam-dragging distillation and its constituents were identified by chromatography coupled with mass spectrometry. Among the 15 compounds identified, the most abundant were carvacrol (29.00%), o-cymene (25.57%), and thymol methyl ether (11.50%). The essential oil was studied in antimicrobial assays to determine the MIC and MBC. The results indicated that a concentration of 120μL/mL of oil was sufficient to inhibit the growth of the following microorganisms: Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) and Salmonella cholerasuis (ATCC 10708). Acute and chronic toxic effects of orally administered oil were investigated in Wistar rats by using standard methods. Doses of 30, 60 and 120mg/kg of the essential oil did not induce significant changes in weight, behavior or hematological and biochemical parameters in the animals. There were no signs of any histopathological changes to the liver, kidneys or heart of the treated rats, suggesting that Lippia origanoides oil is non-toxic after oral administration in acute or chronic toxicity studies. The results obtained in this study show that the essential oil of L. origanoides has a high safety margin, with no detectable toxic effects in rats treated with doses to 120mg/kg. In addition, L. origanoides oil demonstrated potent antimicrobial activity against S. aureus, E. coli and S. cholerasuis. Based on these findings, this essential oil may have practical application as a veterinary antimicrobial.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
Cranial bone reconstructions are necessary for correcting large skull bone defects due to trauma, tumors, infections and craniotomies. Traditional synthetic implant materials include solid or mesh titanium, various plastics and ceramics. Recently, biostable glass-fiber reinforced composites (FRC), which are based on bifunctional methacrylate resin, were introduced as novel implant solution. FRCs were originally developed and clinically used in dental applications. As a result of further in vitro and in vivo testing, these composites were also approved for clinical use in cranial surgery. To date, reconstructions of large bone defects were performed in 35 patients. This thesis is dedicated to the development of a novel FRC-based implant for cranial reconstructions. The proposed multi-component implant consists of three main parts: (i) porous FRC structure; (ii) bioactive glass granules embedded between FRC layers and (iii) a silver-polysaccharide nanocomposite coating. The porosity of the FRC structure should allow bone ingrowth. Bioactive glass as an osteopromotive material is expected to stimulate the formation of new bone. The polysaccharide coating is expected to prevent bacterial colonization of the implant. The FRC implants developed in this study are based on the porous network of randomly-oriented E-glass fibers bound together by non-resorbable photopolymerizable methacrylate resin. These structures had a total porosity of 10–70 volume %, of which > 70% were open pores. The pore sizes > 100 μm were in the biologically-relevant range (50-400 μm), which is essential for vascularization and bone ingrowth. Bone ingrowth into these structures was simulated by imbedding of porous FRC specimens in gypsum. Results of push-out tests indicated the increase in the shear strength and fracture toughness of the interface with the increase in the total porosity of FRC specimens. The osteopromotive effect of bioactive glass is based on its dissolution in the physiological environment. Here, calcium and phosphate ions, released from the glass, precipitated on the glass surface and its proximity (the FRC) and formed bone-like apatite. The biomineralization of the FRC structure, due to the bioactive glass reactions, was studied in Simulated Body Fluid (SBF) in static and dynamic conditions. An antimicrobial, non-cytotoxic polysaccharide coating, containing silver nanoparticles, was obtained through strong electrostatic interactions with the surface of FRC. In in vitro conditions the lactose-modified chitosan (chitlac) coating showed no signs of degradation within seven days of exposure to lysozyme or one day to hydrogen peroxide (H2O2). The antimicrobial efficacy of the coating was tested against Staphylococcus aureus and Pseudomonas aeruginosa. The contact-active coating had an excellent short time antimicrobial effect. The coating neither affected the initial adhesion of microorganisms to the implant surface nor the biofilm formation after 24 h and 72 h of incubation. Silver ions released to the aqueous environment led to a reduction of bacterial growth in the culture medium.
Resumo:
Abstract: The Enterobacteriaceae family contains potentially zoonotic bacteria, and their presence in canaries is often reported, though the current status of these in bird flocks is unknown. Therefore, this study aimed to identify the most common genera of enterobacteria from canaries (Serinus canaria) and their antimicrobial resistance profiles. From February to June of 2013, a total of 387 cloacal swab samples from eight domiciliary breeding locations of Fortaleza city, Brazil, were collected and 58 necropsies were performed in canaries, which belonged to the Laboratory of Ornithological Studies. The samples were submitted to microbiological procedure using buffered peptone water and MacConkey agar. Colonies were selected according to their morphological characteristics on selective agar and submitted for biochemical identification and antimicrobial susceptibility. A total of 61 isolates were obtained, of which 42 were from cloacal swabs and 19 from necropsies. The most isolated bacteria was Escherichia coli with twenty five strains, followed by fourteen Klebsiellaspp., twelve Enterobacterspp., seven Pantoea agglomerans, two Serratiaspp. and one Proteus mirabilis. The antimicrobial to which the strains presented most resistance was sulfonamides with 55.7%, followed by ampicillin with 54.1% and tetracycline with 39.3%. The total of multidrug-resistant bacteria (MDR) was 34 (55.7%). In conclusion, canaries harbor members of the Enterobacteriaceae family and common strains present a high antimicrobial resistance rate, with a high frequency of MDR bacteria.
Resumo:
Abstract: In order to detect virulence factors in Shiga toxin-producing Escherichia coli (STEC) isolates and investigate the antimicrobial resistance profile, rectal swabs were collected from healthy sheep of the races Santa Inês and Dorper. Of the 115 E. coli isolates obtained, 78.3% (90/115) were characterized as STEC, of which 52.2% (47/90) carried stx1 gene, 33.3% (30/90) stx2 and 14.5% (13/90) both genes. In search of virulence factors, 47.7% and 32.2% of the isolates carried the genes saa and cnf1. According to the analysis of the antimicrobial resistance profile, 83.3% (75/90) were resistant to at least one of the antibiotics tested. In phylogenetic classification grouped 24.4% (22/90) in group D (pathogenic), 32.2% (29/90) in group B1 (commensal) and 43.3% (39/90) in group A (commensal). The presence of several virulence factors as well as the high number of multiresistant isolates found in this study support the statement that sheep are potential carriers of pathogens threatening public health.
Resumo:
Abstract: This study aimed to determine whether prepartum antimicrobial and/or Escherichia coli J5 vaccination in dairy heifers influence the milk production, milk quality, and estimate their economic benefit. Thus, 33 dairy heifers were enrolled in four groups using a split-splot design. Groups were: (G1) prepartum antimicrobial infusion and vaccination with an E. coli J5 bacterin, (G2) prepartum antimicrobial infusion, (G3) vaccination with an E. coli J5 bacterin, and (G4) control heifers. Composite milk samples for somatic cell count, total bacteria count and milk composition were collected 15 days after calving and every 15 days until the end of the experiment. Bacteriological analysis was carried out at the end of study. The milk production and the incidence of clinical cases of mastitis, as well as the costs associated with them were recorded. The results demonstrate a reduction on clinical mastitis rates by preventive strategies, which implicated in lower volume of discarded milk (0.99, 1.01, 1.04 and 3.98% for G1, G2, G3 and G4, respectively) and higher economic benefit. Thus, in well-managed dairy herds the prevention of heifer mastitis by vaccination or antimicrobial therapy can reduce the amount of antimicrobials needed to treat clinical mastitis cases and the days of discarded milk.