508 resultados para Anorthite
Resumo:
Leg 76 sampled 31.5 m of basaltic basement at Deep Sea Drilling Project Hole 534A in the Blake-Bahama Basin. The basalts represent a short section of mineralogically uniform, sparsely plagioclase-phyric pillow flows, composed mainly of plagioclase, augitic clinopyroxene, iron-titanium oxides with variable amounts of alteration products (smectite ± carbonate ± quartz). Their major element chemistry is typical of mid-ocean ridge tholeiites and has normative compositions of olivine tholeiites. Mg/(Mg + Fe**2+) ratios range from 0.58 to 0.60, which suggests that these basalts are evolved compared to primitive mantle melts.
Resumo:
A high-MgO andesite which is texturally similar to boninite and a variolitic basalt collected from Site 458, about 100 km west of the Mariana Trench, have been studied through microprobe analyses and melting experiments at high water pressures. The boninite-type andesite is very similar in composition and texture to a boninite from Bonin Islands, except that the former is more calcic than the latter. The variolitic basalt contains magnesian pigeonite (Ca12Mg74Fe14) in cores of augite microphenocrysts. This pigeonite crystallized at temperatures above 1200°C. In the melting experiments of the boninite-type rock, clinopyroxene crystallizes as a liquidus phase at pressures at least above 8 kbar. No olivine crystallizes near the liquidus temperatures, indicating that the magma of this rock cannot be in equilibrium with the upper mantle periodotite (lherzolite) at depths at least greater than 25 km. The boninite-type rock is probably a product of fractional crystallization of a more primitive magma (e.g., olivine-bearing boninite magma) by separation of olivine and orthopyroxene. The magma of the variolitic basalt also cannot be in equilibrium with the upper mantle peridotite, and may be a product of fractional crystallization of a more primitive basaltic magma.
Resumo:
Newly sampled basaltic andesites and andesites from the tholeiitic Ferrar Supergroup of northern Victoria Land and George V Land, Antarctica, are attributed to the known low-Ti and high-Ti series. Aside from known sparsely distributed high-Ti extrusives, a high-Ti sill was found in the Alamein Range outside the Rennick Graben. Low-Ti lavas, sills and dikes display wide petrographical, mineral and geochemical variations, reflecting extensive in-situ differentiation. High-Ti rocks from Litell Rocks are homogeneous with respect to mineralogy and geochemistry, minor deviations are shown by the sampled sill. Chilled margins of low-Ti sills, dikes and lava flows exhibit nearly constant bulk-rock chemistry (mg# ~60) within the studied area. Compared to chilled margins from Tasmanian sills, the striking uniformity of the pre-emplacement chemistry of Ferrar magmas over large distances supports the magma transport model of Elliot et al. (1999, doi:10.1016/S0012-821X(99)00023-0). In the area investigated, compositional variations within the low-Ti series, caused by in-situ differentiation, increase towards the Wilson-Bowers Terrane boundary, possibly displaying the asymmetrical distribution of outcrops over this area. Absence of Ferrar occurrences east of the Bowers Terrane remains a matter of palaeo-geodynamic discussion. Besides, the secondary mineralogy of extrusives from Litell Rocks and Monument Nunataks exhibits noticeable differences, which indicates an elevated thermal gradient in the vicinity of Litell Rocks compared to Monument Nunataks during the Cretaceous.
Resumo:
We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg + Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca + Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti-rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B. This suggests that a significant mass fraction of more evolved products is needed to balance the high Mg# of the bulk hole. Calculations show that 25%-45% of average Eastern Atlantis II Fracture Zone basalt is needed to combine with 55%-75% of bulk Hole 735B rocks to give a melt of Mg# 0.637, parental to the most primitive Hole 735B cumulate. On the other hand, the parental melt with Mg# 0.637 is far too evolved to be in equilibrium with residual mantle olivine of Fo > 0.89. Therefore, a significant mass fraction of more primitive cumulate (e.g., high Mg# dunite and troctolite) is yet to be sampled. This hidden cumulate could well be deep in the lower crust or simply in the mantle section. We favor the latter because of the thickened cold thermal boundary layer atop the mantle beneath slow-spreading ridges, where cooling and crystallization of ascending mantle melts is inevitable. These observations and data interpretation require reconsideration of the popular concept of primary mantle melts and relationships among the extent of mantle melting, melt production, and the composition and thickness of igneous crust.
Resumo:
We have studied the chemical zoning of plagioclase phenocrysts from the slow-spreading Mid-Atlantic Ridge and the intermediate-spreading rate Costa Rica Rift to obtain the time scales of magmatic processes beneath these ridges. The anorthite content, Mg, and Sr in plagioclase phenocrysts from the Mid-Atlantic Ridge can be interpreted as recording initial crystallisation from a primitive magma (~11 wt% MgO) in an open system. This was followed by crystal accumulation in a mush zone and later entrainment of crystals into the erupted magma. The initial magma crystallised plagioclase more anorthitic than those in equilibrium with any erupted basalt. Evidence that the crystals accumulated in a mush zone comes from both: (1) plagioclase rims that were in equilibrium with a Sr-poor melt requiring extreme differentiation; and (2) different crystals found in the same thin section having different histories. Diffusion modelling shows that crystal residence times in the mush were <140 years, whereas the interval between mush disaggregation and eruption was ?1.5 years. Zoning of anorthite content and Mg in plagioclase phenocrysts from the Costa Rica Rift show that they partially or completely equilibrated with a MgO-rich melt (>11 wt%). Partial equilibration in some crystals can be modelled as starting <1 year prior to eruption but for others longer times are required for complete equilibration. This variety of times is most readily explained if the mixing occurred in a mush zone. None of the plagioclase phenocrysts from the Costa Rica Rift that we studied have Mg contents in equilibrium with their host basalt even at their rims, requiring mixing into a much more evolved magma within days of eruption. In combination these observations suggest that at both intermediate- and slow-spreading ridges: (1) the chemical environment to which crystals are exposed changes on annual to decadal time scales; (2) plagioclase crystals record the existence of melts unlike those erupted; and (3) disaggregation of crystal mush zones appears to precede eruption, providing an efficient mechanism by which evolved interstitial melt can be mixed into erupted basalts.
Resumo:
IODP Hole U1309D (Atlantis Massif, Mid-Atlantic Ridge 30°N) is the second deepest hole drilled into slow spread gabbroic lithosphere. It comprises 5.4% of olivine-rich troctolites (~ > 70% olivine), possibly the most primitive gabbroic rocks ever drilled at mid-ocean ridges. We present the result of an in situ trace element study carried out on a series of olivine-rich troctolites, and neighbouring troctolites and gabbros, from olivine-rich intervals in Hole U1309D. Olivine-rich troctolites display poikilitic textures; coarse-grained subhedral to medium-grained rounded olivine crystals are included into large undeformed clinopyroxene and plagioclase poikiloblasts. In contrast, gabbros and troctolites have irregularly seriate textures, with highly variable grain sizes, and locally poikilitic clinopyroxene oikocrysts in troctolites. Clinopyroxene is high Mg# augite (Mg# 87 in olivine-rich troctolites to 82 in gabbros), and plagioclase has anorthite contents ranging from 77 in olivine-rich troctolites to 68 in gabbros. Olivine has high forsterite contents (82-88 in olivine-rich troctolites, to 78-83 in gabbros) and is in Mg-Fe equilibrium with clinopyroxene. Clinopyroxene cores and plagioclase are depleted in trace elements (e.g., Ybcpx ~ 5-11 * Chondrite), they are in equilibrium with the same MORB-type melt in all studied rock-types. These compositions are not consistent with the progressively more trace element enriched (evolved) compositions expected from olivine rich primitive products to gabbros in a MORB cumulate sequence. They indicate that clinopyroxene and plagioclase crystallized concurrently, after melts having the same trace element composition, consistent with crystallization in an open system with a buffered magma composition. The slight trace element enrichments and lower Cr contents observed in clinopyroxene rims and interstitial grains results from crystallization of late-stage differentiated melts, probably indicating the closure of the magmatic system. In contrast to clinopyroxene and plagioclase, olivine is not in equilibrium with MORB, but with a highly fractionated depleted melt, similar to that in equilibrium with refractory oceanic peridotites, thus possibly indicating a mantle origin. In addition, textural relationships suggest that olivine was in part assimilated by the basaltic melts after which clinopyroxene and plagioclase crystallized (impregnation). These observations suggest a complex crystallization history in an open system involving impregnation by MORB-type melt(s) of an olivine-rich rock or mush. The documented magmatic processes suggest that olivine-rich troctolites were formed in a zone with large magmatic transfer and accumulation, similar to the mantle-crust transition zone documented in ophiolites and at fast spreading ridges.
Resumo:
A geochemical, mineralogical, and isotopic database comprising 75 analyses of Ocean Drilling Program (ODP) Leg 193 samples has been prepared, representing the variable dacitic volcanic facies and alteration types observed in drill core from the subsurface of the PACMANUS hydrothermal system (Table T1. The data set comprises major elements, trace and rare earth elements (REE), various volatiles (S, F, Cl, S, SO4, CO2, and H2O), and analyses of 18O and 86Sr/87Sr for bulk rock and mineral separates (anhydrite). Furthermore, normative mineral proportions have been calculated based on the results of X-ray diffraction (XRD) analysis (Table T2) using the SOLVER function of the Microsoft Excel program. Several of the samples analyzed consist of mesoscopically distinctive domains, and separate powders were generated to investigate these hand specimen-scale heterogeneities. Images of all the samples are collated in Figure F1, illustrating the location of each powder analyzed and documenting which measurements were performed.
Resumo:
Air-fall volcanic ash and pumice were recovered from 22 intervals in upper Miocene-Pleistocene nannofossil oozes cored in Hole 810C on Shatsky Rise, northwest Pacific. Shatsky Rise is near the eastern limit of ash falls produced by explosive volcanism in arc systems in northern Japan and the Kuriles, more than 1600 km away. Electron probe analyses establish that the ash beds and pumice pebbles are andesitic to rhyolitic in composition, and belong to both tholeiitic and high-alumina lineages similar to tephra from Japanese volcanoes. High-speed winds in the polar-front and subtropical jets are evidently what propelled the ash for such a distance. The pumice arrived by flotation, driven from the same directions by winds, waves, and currents. It is not ice-rafted debris from the north. One thick pumice bed probably was deposited when a large pumice mat passed over Shatsky Rise. Far more abundant ash occurs in sediments cored at DSDP Sites 578 through 580, about 500 km west of Shatsky Rise. Most of the ash and pumice at Shatsky Rise can be correlated with specific ash beds at 1, 2, or all 3 of these sites by interpolating to precisely determined magnetic reversal sequences in the cores. Most of the correlations are to thick ash layers (5.7 +/- 3.0 cm) at one or more sites. These must represent extremely large eruptions that spread ash over very wide areas. Whereas several of the thicker correlative ashes fell from elongate east-trending plumes directed from central Japan, the majority of them - dating from about 2 Ma - came from the North Honshu and Kurile arc systems to the northwest. This direction probably was in response to both long-term and seasonal fluctuations in the location and velocity of the polar-front jet, and to more vigorous winter storm fronts originating over glaciated Siberia.
Resumo:
Tholeiitic basalts were obtained from basaltic basement ranging in age from 6 to 17 m.y. on IPOD/DSDP Leg 63. The main rock types encountered at all sites but 473 are basaltic pillow lavas. Although many of these pillow basalts are highly or moderately altered, fresh glass is usually present. At Site 473, we recovered coarse-grained, massive basalts; no clearly defined pillowed forms were observed. Phenocrysts or microphenocrysts present in the Leg 63 basalts are Plagioclase and clinopyroxene at Site 469; olivine, Plagioclase, and spinel at Site 470; and olivine, Plagioclase, and clinopyroxene at Sites 472 and 473. Olivines of the basalts from Holes 470A and 472 (Fo85-88) are generally more magnesian than those of the Hole 473 basalts (Fo77-81). Also, plagioclases of Holes 470A and 472 basalts (An70-85) are generally more calcic than those of Holes 469 and 473 basalts (An66-72). Geochemical study of the Leg 63 basalts indicates that in all cases they are large-ion-lithophile (LIL) element depleted tholeiites like typical abyssal tholeiites. In particular, they are very similar in composition to those described from the eastern Pacific, although the degree of iron enrichment found in the Leg 63 basalts is not as extensive as in basalts from the Galapagos spreading center. Hence, the geochemical evidence of the Leg 63 basalts is compatible with their formation at a spreading center. Compositional variations in Leg 63 basalts from any single drill hole is small. Major and trace element data indicate that the samples from Holes 469 and 473 are more fractionated in chemical composition than are the samples from Holes 470A and 472; this compositional variation may be largely ascribed to differences in the extent of shallow-level fractional crystallization of similar parental magma. The Hole 472 samples, however, show a LIL element character distinct from the other Leg 63 samples.
Resumo:
Gabbroic rocks and their late differentiates recovered at Site 735 represent 500 m of oceanic layer 3. The original cooling of a mid-ocean ridge magma chamber, its penetration by ductile shear zones and late intrusives, and the subsequent penetration of seawater through a network of cracks and into highly permeable magmatic hydrofracture horizons are recorded in the metamorphic stratigraphy of the core. Ductile shear zones are characterized by extensive dynamic recrystallization of primary phases, beginning in the granulite facies and continuing into the lower amphibolite facies. Increasing availability of seawater during dynamic recrystallization is reflected in depletions in 18O, increasing abundance of amphibole of variable composition and metamorphic plagioclase of intermediate composition, and more complete coronitic or pseudomorphous static replacement of magmatic minerals. Downcore correlation of synkinematic assemblages, bulk-rock oxygen isotopic compositions, and vein abundance suggest that seawater is introduced into the crust by way of small cracks and veins that mark the end of the ductile phase of deformation. This "deformation-enhanced" metamorphism dominates the upper 180 and the lower 100 m of the core. In the lower 300 m of the core, mineral assemblages of greenschist and zeolite facies are abundant within or adjacent to brecciated zones. Leucocratic veins found in these zones and adjacent host rock contain diopside, sodic plagioclase, epidote, chlorite, analcime, thomsonite, natrolite, albite, quartz, actinolite, sphene, brookite, and sulfides. The presence of zircon, Cl-apatite, sodic plagioclase, sulfides, and diopside in leucocratic veins having local magmatic textures suggests that some of the veins originated from late magmas or from hydrothermal fluids exsolved from such magmas that were subsequently replaced by (seawater-derived) hydrothermal assemblages. The frequent association of these late magmatic intrusive rocks within the brecciated zones suggests that they are both artifacts of magmatic hydrofracture. Such catastrophic fracture and hydrothermal circulation could produce episodic venting of hydrothermal fluids as well as the incorporation of a magmatically derived hydrothermal component. The enhanced permeability of the brecciated zones produced lower temperature assemblages because of larger volumes of seawater that penetrated the crust. The last fractures were sealed either by these hydrothermal minerals or by late carbonate-smectite veins, resulting in the observed low permeability of the core.
Resumo:
Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250? C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting.
Resumo:
Numerous fresh ash layers comprise about 0.3% by volume of Neogene to Holocene sediments drilled at Leg 104 Sites 642 and 643 (Vøring Plateau, North Atlantic). Median grain sizes of the ashes are about 100 /µm and maximum grain sizes range up to 1200 µm. Rhyolitic pumice shards dominate, with minor bubble wall shards. Basaltic shards are poorly vesicular and blocky or round. Phenocrystic plagioclase, zircon, and clinopyroxene occur in the rhyolitic, plagioclase, and clinopyroxene phenocrysts and basaltic lithics in the basaltic tephra. Quartz, amphibole, clinozoisite, and rutile are interpreted as xenocrysts. All ash layers are well-sorted and represent distal fallout from major explosive eruptions. Most ashes are rhyolitic (high-K and low-K) in composition, some are bimodal (tholeiitic and rhyolitic). Early Miocene tephra is dominantly basaltic. Iceland is inferred to be the likely source region for most ashes. Late Miocene high-K rhyolites may have originated from the K-rich Jan Mayen magmatic province. One Quaternary layer with biotite and alkali feldspar phenocrysts may have been derived from Jan Mayen Island. Four individual Pliocene to Holocene ash layers from Sites 642 and 643 can be correlated fairly well. Upper Miocene layers are tentatively correlated as a sequence between Sites 642 and 643. Average calculated layer frequencies are about three layers/m.y. through the Pliocene and Pleistocene and five to eight layers per m.y. through the middle and late Miocene, suggesting rather continuous volcanic activity in the North Atlantic. Episodic magmatic activity during Neogene epochs in this part of the North Atlantic, as postulated in the literature, cannot be confirmed.
Resumo:
The basement cored at Site 1201 (west Philippine Basin) during Ocean Drilling Program Leg 195 consists of a 91-m-thick sequence of basalts, mostly pillow lavas and perhaps one sheet lava flow, with a few intercalations of hyaloclastite and interpillow sedimentary material. Hydrothermal alteration pervasively affected the basalt sequence, giving rise to a variety of secondary minerals such as K-Fe-Mg-clay minerals, oxyhydroxides and clay minerals mixtures, natrolite group zeolites, analcite, alkali feldspar, and carbonate. The primary minerals of pillow and sheet basalts that survived the intense hydrothermal alteration were investigated by electron microprobe with the aim of characterizing their chemical composition and variability. The primary minerals are mostly plagioclase, ranging in composition from bytownite through labradorite to andesine, chromian-magnesian-diopside, and spinels, both Ti magnetite (partially maghemitized) and chromian spinel. Overall, the chemical features of the primary minerals of Site 1201 basalts correspond to the primitive character of the bulk rocks, suggesting that the parent magma of these basalts was a mafic tholeiitic magma that most likely only suffered limited fractional crystallization and crystallized at high temperatures (slightly below 1200°C) and under increasing fO2 conditions. The major element composition of clinopyroxene suggests a backarc affinity of the mantle source of Site 1201 basement.
Resumo:
The igneous geochemistry of lavas and breccias from the basement of Sites 790 and 791, and pumice clasts from the Pliocene-Pleistocene sedimentary section of Sites 788, 790, 791, and 793 were studied. Arc volcanism became silicic about 1.5 m.y. before the inception of rifting in the Sumisu Rift at 2 Ma, but eruption of these silicic magmas reflects changes in stress regime, especially during the last 130,000 yr, rather than crustal anatexis. Arc magmas have had a larger proportion of slab-derived components since the inception of rifting than before, but are otherwise similar. Rift basalts and rhyolites are derived from a different source than are arc andesites to rhyolites. The rift source has less slab-derived material and is an E-MORB-like source, in contrast to an N-MORB-type source overprinted with more slab-derived material beneath the arc. Rift magma types, in the form of rare pumice and lithic clasts, preceded the rift, and the earliest magmas that erupted in the rift already differed from those of the arc. The earliest large rift eruption produced an exotic explosion breccia ("mousse") despite eruption at >1800 mbsl. Although this rock type is attributed primarily to high magmatic water content, the clasts are more MORB-like in trace element and isotopic composition than are modern Mariana Trough basalts. After rifting began, arc volcanism continued to be predominantly silicic, with individual pumice deposits containing clasts that vary in composition by about 5 wt% SiO2, or about as much as in historical eruptions of submarine Izu Arc volcanoes. The overall variations in magma composition with time during the inception of arc rifting are broadly similar in the Sumisu Rift and Lau Basin, though newly tapped OIB-type mantle seems to be present earlier during basin formation in the Sumisu than Lau case.