952 resultados para Anion pairing
Resumo:
We study the properties of the 1S0 pairing gap in low-density neutron matter. Different corrections to the lowest-order scattering length approximation are explored, resulting in a strong suppression with respect to the BCS result.
Resumo:
We analyze how the spatial localization properties of pairing correlations are changing in a major neutron shell of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the chemical potential is close to a low or a high angular momentum level and has little sensitivity to whether the pairing force acts at the surface or in the bulk. The pairing density averaged over one major shell is, however, rather flat, exhibiting little dependence on the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic chain 100-132Sn are presented for demonstration purposes.
Resumo:
The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.
Resumo:
The utility of the nitroaldol reaction for accessing 3-nitro-pyranoside, 3-nitro-septanoside or 4-nitro-septanoside derivatives, by reaction of the anion of nitromethane with glycoside dialdehydes is demonstrated. Initially, the feasibility of using unprotected glucoside dialdehydes was probed for the synthesis of the septanoside products, but this affoided pyranoside rather than septanoside targets. Subsequent studies utilised protected glycoside dialdehydes within the methodology, which allowed entry into a range of 3-nitro or 4-nitro-septanosides in good yield NMR spectroscopic analysis allowed determination of the stereochemistry of each of the products thus afforded.
Resumo:
Statistical approaches have been applied to examine amino acid pairing preferences within parallel beta-sheets. The main chain hydrogen bonding pattern in parallel beta-sheets means that, for each residue pair, only one of the residues is involved in main chain hydrogen bonding with the strand containing the partner residue. We call this the hydrogen bonded (HB) residue and the partner residue the non-hydrogen bonded (nHB) residue, and differentiate between the favorability of a pair and that of its reverse pair, e.g. Asn(HB)-Thr(nHB)versus Thr(HB)-Asn(nHB). Significantly (p < or = 0.000001) favoured pairings were rationalised using stereochemical arguments. For instance, Asn(HB)-Thr(nHB) and Arg(HB)-Thr(nHB) were favoured pairs, where the residues adopted favoured chi1 rotamer positions that allowed side-chain interactions to occur. In contrast, Thr(HB)-Asn(nHB) and Thr(HB)-Arg(nHB) were not significantly favoured, and could only form side-chain interactions if the residues involved adopted less favourable chi1 conformations. The favourability of hydrophobic pairs e.g. Ile(HB)-Ile(nHB), Val(HB)-Val(nHB) and Leu(HB)-Ile(nHB) was explained by the residues adopting their most preferred chi1 and chi2 conformations, which enabled them to form nested arrangements. Cysteine-cysteine pairs are significantly favoured, although these do not form intrasheet disulphide bridges. Interactions between positively and negatively charged residues were asymmetrically preferred: those with the negatively charged residue at the HB position were more favoured. This trend was accounted for by the presence of general electrostatic interactions, which, based on analysis of distances between charged atoms, were likely to be stronger when the negatively charged residue is the HB partner. The Arg(HB)-Asp(nHB) interaction was an exception to this trend and its favorability was rationalised by the formation of specific side-chain interactions. This research provides rules that could be applied to protein structure prediction, comparative modelling and protein engineering and design. The methods used to analyse the pairing preferences are automated and detailed results are available (http://www.rubic.rdg.ac.uk/betapairprefsparallel/).
Resumo:
Statistical approaches have been applied to examine amino acid pairing preferences within parallel beta-sheets. The main chain hydrogen bonding pattern in parallel beta-sheets means that, for each residue pair, only one of the residues is involved in main chain hydrogen bonding with the strand containing the partner residue. We call this the hydrogen bonded (HB) residue and the partner residue the non-hydrogen bonded (nHB) residue, and differentiate between the favourability of a pair and that of its reverse pair, e.g. Asn(HB)-Thr(nHB) versus Thr(HB)-Asn(nHB). Significantly (p <= 0.000001) favoured pairings were rationalised using stereochemical arguments. For instance, Asn(HB)-Thr(nHB) and Arg(HB)-Thr(nHB) were favoured pairs, where the residues adopted favoured chi(1) rotamer positions that allowed side-chain interactions to occur. In contrast, Thr(HB)-Asn(nHB) and Thr(HB)-Arg(nHB) were not significantly favoured, and could only form side-chain interactions if the residues involved adopted less favourable chi(1) conformations. The favourability of hydrophobic pairs e.g. Ile(HB)-Ile(nHB), Val(HB)-Val(nHB) and Leu(HB)-Ile(nHB) was explained by the residues adopting their most preferred chi(1) and chi(2) conformations, which enabled them to form nested arrangements. Cysteine-cysteine pairs are significantly favoured, although these do not form intrasheet disulphide bridges. Interactions between positively and negatively charged residues were asymmetrically preferred: those with the negatively charged residue at the HB position were more favoured. This trend was accounted for by the presence of general electrostatic interactions, which, based on analysis of distances between charged atoms, were likely to be stronger when the negatively charged residue is the HB partner. The Arg(HB)-Asp(nHB) interaction was an exception to this trend and its favourability was rationalised by the formation of specific side-chain interactions. This research provides rules that could be applied to protein structure prediction, comparative modelling and protein engineering and design. The methods used to analyse the pairing preferences are automated and detailed results are available (http:// www.rubic.rdg.ac.uk/betapairprefsparallel/). (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A Cu-II complex of protonated 4,4'-bipyridine (Hbyp) and 2-picolinate (pic), [Cu-2(pic)(3)(Hbyp)(H2O)(ClO4)(2)], has been synthesised and characterised by single-crystal X-ray analysis. The structure consists of two copper atoms that have different environments, bridged by a carboxylate group. The equatorial plane is formed by the two bidentate picolinate groups in one Cu-II, and one picolinate, one monodentate 4,4'-bipyridyl ligand and a water molecule in the other. Each copper atom is also weakly bonded to a perchlorate anion in an axial position. One of the coordinated perchlorate groups displays anion-pi interaction with the coordinated pyridine ring. The noncoordinated carboxylate oxygen is involved in lone-pair (l.p.)-pi interaction with the protonated pyridine ring. In addition there are pi-pi and H-bonding interactions in the structure. Bader's theory of "atoms in molecules" (AIM) is used to characterise the anion-pi and l.p.-pi interactions observed in the solid state. A high-level ab initio study (RI-MP2/aug-cc-pVTZ level of theory) has been performed to analyse the anion-pi binding affinity of the pyridine ring when it is coordinated to a transition metal and also when the other pyridine ring of the 4,4'-bipyridine moiety is protonated. Theoretical investigations support the experimental findings of an intricate network of intermolecular interactions, which is characterised in the studied complex, and also indicate that protonation as well as coordination to the transition metal have important roles in influencing the pi-binding properties of the aromatic ring. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).
Resumo:
A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2) (L = L-1 [N-1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L-2 [N-1-pyridine-2-ylmethylene-propane1,3-diamine] for complex 2 or L-3 [N-1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)(2) (L=L-4 [N,N'-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L-5 [NN'-bis(pyridine-2-ylmethyline)-propane-1, 3-diamine] for complex 5 or L-6 [NN'-bis-(1-pyridine-2-yl-ethylidine)-propane- 1, 2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, I and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]center dot 2H(2)O (1) of mono-condensed tridentate Schiff base ligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the Nil, as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)(2)center dot 4H(2)O furnishing the complex [NiL(NCS)] (2) and with CuCl2 center dot 2H(2)O in the presence of NaN3 or NH4SCN producing [CuL(N-3)](2) (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)(2)center dot 6H(2)O and Cu(NO3)(2)center dot 3H(2)O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)(2)center dot 6H(2)O or Ni(NO3)(2)center dot 6H(2)O to yield [Ni(hap)(2)] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, Ni-II possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around Cu-II in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around Cu-II is square pyramidal. In both 5 and 6, the Cu-II atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.