966 resultados para Amyloid-Beta


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The clinical picture of 15 patients (10 male, five female) with amyloid arthropathy secondary to chronic renal failure treated with haemodialysis has been studied. The average period of haemodialysis was 10.8 years. Joint symptoms appeared between three and 13 years after starting haemodialysis. No patient had renal amyloidosis. Early symptoms were varied and often overlapped: knee swelling (seven patients), painful and stiff shoulders (seven), and carpal tunnel syndrome (six) were the most prominent. Follow up showed extension to other joints. Joint effusions were generally of the non-inflammatory type. Radiologically, geodes and erosions of variable sizes were seen in the affected joints, which can develop into a destructive arthropathy. Amyloid was found in abdominal fat in three of the 12 patients on whom a needle aspiration was performed. Four of 12 patients showed changes compatible with amyloid infiltration in the echocardiogram. One patient had amyloid in the gastric muscular layer, another in the colon mucus, and two of four in rectal biopsy specimens. Amyloid deposits showed the presence of beta 2 microglobulin in 10 patients. The clinical and radiological picture was similar to the amyloid arthropathy associated with multiple myeloma. These patients can develop systemic amyloidosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The clinical picture of 15 patients (10 male, five female) with amyloid arthropathy secondary to chronic renal failure treated with haemodialysis has been studied. The average period of haemodialysis was 10.8 years. Joint symptoms appeared between three and 13 years after starting haemodialysis. No patient had renal amyloidosis. Early symptoms were varied and often overlapped: knee swelling (seven patients), painful and stiff shoulders (seven), and carpal tunnel syndrome (six) were the most prominent. Follow up showed extension to other joints. Joint effusions were generally of the non-inflammatory type. Radiologically, geodes and erosions of variable sizes were seen in the affected joints, which can develop into a destructive arthropathy. Amyloid was found in abdominal fat in three of the 12 patients on whom a needle aspiration was performed. Four of 12 patients showed changes compatible with amyloid infiltration in the echocardiogram. One patient had amyloid in the gastric muscular layer, another in the colon mucus, and two of four in rectal biopsy specimens. Amyloid deposits showed the presence of beta 2 microglobulin in 10 patients. The clinical and radiological picture was similar to the amyloid arthropathy associated with multiple myeloma. These patients can develop systemic amyloidosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid aggregation is linked to a large number of human disorders, from neurodegenerative diseases as Alzheimer"s disease (AD) or spongiform encephalopathies to non-neuropathic localized diseases as type II diabetes and cataracts. Because the formation of insoluble inclusion bodies (IBs) during recombinant protein production in bacteria has been recently shown to share mechanistic features with amyloid self-assembly, bacteria have emerged as a tool to study amyloid aggregation. Herein we present a fast, simple, inexpensive and quantitative method for the screening of potential anti-aggregating drugs. This method is based on monitoring the changes in the binding of thioflavin-S to intracellular IBs in intact Eschericchia coli cells in the presence of small chemical compounds. This in vivo technique fairly recapitulates previous in vitro data. Here we mainly use the Alzheimer"s related beta-amyloid peptide as a model system, but the technique can be easily implemented for screening inhibitors relevant for other conformational diseases simply by changing the recombinant amyloid protein target. Indeed, we show that this methodology can be also applied to the evaluation of inhibitors of the aggregation of tau protein, another amyloidogenic protein with a key role in AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid aggregation is linked to a large number of human disorders, from neurodegenerative diseases as Alzheimer"s disease (AD) or spongiform encephalopathies to non-neuropathic localized diseases as type II diabetes and cataracts. Because the formation of insoluble inclusion bodies (IBs) during recombinant protein production in bacteria has been recently shown to share mechanistic features with amyloid self-assembly, bacteria have emerged as a tool to study amyloid aggregation. Herein we present a fast, simple, inexpensive and quantitative method for the screening of potential anti-aggregating drugs. This method is based on monitoring the changes in the binding of thioflavin-S to intracellular IBs in intact Eschericchia coli cells in the presence of small chemical compounds. This in vivo technique fairly recapitulates previous in vitro data. Here we mainly use the Alzheimer"s related beta-amyloid peptide as a model system, but the technique can be easily implemented for screening inhibitors relevant for other conformational diseases simply by changing the recombinant amyloid protein target. Indeed, we show that this methodology can be also applied to the evaluation of inhibitors of the aggregation of tau protein, another amyloidogenic protein with a key role in AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single-crystal X-ray diffraction study of the terminally protected tetrapeptide Boc-beta-Ala-Aib-Leu-Aib-OMe 1 (Aib: alpha-aminoisobutyric acid; beta-Ala: beta-Alanine) reveals that it adopts a new type of double turn structure which self-associates to form a unique supramolecular helix through intermolecular hydrogen bonds. Scanning electron microscopic studies show that peptide 1 exhibits amyloid-like fibrillar morphology in the solid state. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies show that the extended structure of dipeptide I Boc-beta-Ala-m-ABA-OMe (m-ABA: meta-aminobenzoic acid) self-assembles in the solid state by intermolecular hydrogen bonding to create an infinite parallel P-sheet structure. In dipeptide II Boc-gamma-Abu-m-ABA-OMe (gamma-Abu: gamma-aminobutyric acid), two such parallel beta-sheets are further cross-linked by intermolecular hydrogen bonding through m-aminobenzoic acid moieties. SEM (scanning electron microscopy) studies reveal that both the peptides I and II form amyloid-like fibrils in the solid state. The fibrils are also found to be stained readily by Congo red, a characteristic feature of the amyloid fiber whose accumulation causes several fatal diseases such as Alzheimer's, prion-protein etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe experiments designed to explore the possibility of using amyloid fibrils as new nanoscale biomaterials for promoting and exploiting cell adhesion, migration and differentiation in vitro. We created peptides that add the biological cell adhesion sequence (RGD) or a control sequence (RAD) to the C-terminus of an 11-residue peptide corresponding to residues 105-115 of the amyloidogenic protein transthyretin. These peptides readily self-assemble in aqueous solution to form amyloid fibrils, and X-ray fibre diffraction shows that they possess the same strand and sheet spacing in the characteristic cross-beta structure as do fibrils formed by the parent peptide. We report that the fibrils containing the RGD sequence are bioactive and that these fibrils interact specifically with cells via the RGD group displayed on the fibril surface. As the design of such functionalized fibrils can be systematically altered, these findings suggest that it will be possible to generate nanomaterials based on amyloid fibrils that are tailored to promote interactions with a wide variety of cell types. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A water-soluble tripeptide Val-Ile-Ala (VIA) 1, bearing sequence identity with the C-terminal portion of the Alzheimer A beta-peptide (A beta(40-42)), self-assembles, in crystalline form, to produce an intermolecularly hydrogen bonded supramolecular beta-sheet structure which self-associates to form straight, unbranched nanofibrils exhibiting amyloid-like behavior; in contrast, the synthetic tripeptide Ala-Val-Ile (AVI) 2 self-assembles to produce a beta-sheet structure that forms branched nanofibrils which do not show any characteristic features of amyloid-like fibrils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three terminally protected tripeptides Boc-gamma-Abu-Val-Leu-OMe 1, Boc-gamma-Abu-Leu-Phe-OMe 2 and Boc-gamma-Abu-Val-Tyr-OMe 3 (gamma-Abu = gamma-aminobutyric acid) each containing an N-terminally positioned gamma-aminobutyric acid residue have been synthesized, purified and studied. FT-IR studies of all these peptides revealed that these peptides form intermolecularly hydrogen bonded supramolecular beta-sheet structures. Peptides 1, 2 and 3 adopt extended backbone beta-strand molecular structures in crystals. Crystal packing of all these peptides demonstrates that these beta-strand structures self-assemble to form intermolecularly H-bonded parallel beta-sheet structures. Peptide 3 uses a side chain tyrosyl -OH group as an additional hydrogen bonding functionality in addition to the backbone CONH groups to pack in crystals. Transmission electron microscopic studies of all peptides indicate that they self-assemble to form nanofibrillar structures of an average diameter of 65 nm. These peptide fibrils exhibit amyloid-like behavior as they bind to a physiological dye Congo red and show a characteristic green-gold birefringence under polarizing microscope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effects of NaCl on the self-assembly of AAKLVFF and beta A beta AKLVFF in solution. Both AAKLVFF and beta A beta AKLVFF self-assemble into twisted fibers in aqueous solution. The addition of NaCl to aqueous solutions of AAKLVFF produces large crystal-like nanotapes which eventually precipitate. In contrast, highly twisted fibrils were observed for beta A beta AKLVFF solutions at low salt concentration, while a coexistence of highly twisted fibers and nanotubes was observed for beta A beta AKLVFF at high salt concentration. The self-assembled structures observed for beta A beta AKLVFF in NaCl solutions were ascribed to the progressive screening of the beta A beta AKLVFF surface charge caused by the addition of salt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A micellar nanocontainer delivery and release system is designed on the basis of a peptide-polymer conjugate. The hybrid molecules self-assemble into micelles comprising a modified amyloid peptide core surrounded by a PEG corona. The modified amyloid peptide previously studied in our group forms helical ribbons based on a beta-sheet motif and contains beta-amino acids that are excluded from the beta-sheet structure, thus being potentially useful as fibrillization inhibitors. In the model peptide-PEG hybrid system studied, enzymatic degradation using alpha-chymotrypsin leads to selective cleavage close to the PEG-peptide linkage, break up of the micelles, and release of peptides in unassociated form. The release of monomeric peptide is useful because aggregation of the released peptide into beta-sheet amyloid fibrils is not observed. This concept has considerable potential in the targeted delivery of peptides for therapeutic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the use of molecular combing as an alignment method to obtain macroscopically oriented amyloid fibrils on planar surfaces. The aligned fibrils are studied by polarized infrared spectroscopy. This gives structural information that cannot be definitively obtained from standard infrared experiments on isotropic samples, for example, confirmation of the characteristic cross-beta amyloid core structure, the side-chain orientation from specific amino acids, and the arrangement of the strands within the fibrils, as we demonstrate here. We employed amyloid fibrils from hen egg white lysozyme (HEWL) and from a model octapeptide. Our results demonstrate molecular combing as a straightforward method to align amyloid fibrils, producing highly anisotropic infrared linear dichroism (IRLD) spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral amyloid angiopathy (CAA) is an age-associated disease characterized by amyloid deposition in cerebral and meningeal vessel walls. CAA is detected in the majority of the individuals with dementia and also in a large number of non-demented elderly individuals. In addition, CAA is strongly associated with Alzheimer's disease (AD) pathology. Mechanical consequences including intra-cerebral or subarachnoid hemorrhage remains CAA most feared complication, but only a small fraction of CAA results in severe bleeding. On the hand the non-mechanical consequences in cerebrovascular regulation are prevalent and may be even more deleterious. Studies of animal models have provided strong evidence linking the vasoactive A beta 1-40, the main species found in CAA, to disturbances in endothelial-dependent factors, disrupting cerebrovascular regulation Here, we aimed to review experimental findings regarding the non-mechanical consequences of CAA for cerebrovascular regulation and discuss the implications of these results to clinical practice. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES: Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN: Preadipocytes were treated with rSAA and analyzed for changes in viability and [H-3-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-H-3]-glucose uptake and glycerol release were evaluated. RESULTS: rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9 +/- 0.54%) compared with the control cells (39.8 +/- 2.2%, ***P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPAR gamma 2 (peroxisome proliferator-activated receptor gamma 2), C/EBP beta (CCAAT/enhancer-binding protein beta) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-H-3]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor alpha, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS: We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of alpha-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote alpha-synuclein aggregation. Taking into account the toxicity of alpha-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.