968 resultados para Alpha-spectrometry, total dissolution
Resumo:
Two diagenetic manganese nodules from the Peru Basin were investigated by thermal ionization mass spectrometry and high resolution alpha spectrometry for uranium and thorium. The TIMS concentrations for nodule 62KD (63KG) vary as follows: 0.12-1.01 ppb (0.06-0.59) 230Th, 0.51-1.98 ppm (0.43-1.40) 232Th, 0.13-0.80 ppb (0.09-0.49) 234U, and 1.95-13.47 ppm (1.66-8.24) 238U. Both nodules have average growth rates of ~110 mm per million years. However, from the variations of excess 230Th with depth we estimate partial accumulation rates which range from 50 to 400 mm per million years. The 234U dating method cannot be applied due to remobilization of U from the sediment and subsequent incorporation into the nodules' crystal lattice, reflected by decay corrected 234U values far above the ocean water value. Sections of fast nodule growth are related to those layers having high Mn/Fe ratios (up to 200) and higher densities. As a possible explanation we develop a scenario that describes similar glacial/interglacial trends in both nodules as a record of regional changes of sediment and/or deep water chemistry.
Resumo:
Thorium and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution Th-230(excess) profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06-0.59 ppb (Th-230), 0.43-1.40 ppm (Th-232), 0.09-0.49 ppb (U-234) and 1.66-8.24 ppm (U-238). The uranium activity ratio in the uppermost samples (1-6 mm) and in two further sections in the nodule at 12.5+/-1.0 mm and 27.3-33.5 mm comes close to the present ocean wa ter value of 1.144+/-0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the Th-230(excess) concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant Th-230(excess) concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11-15 and 28-33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable sb supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.
Resumo:
Characteristic black nodules have been retrieved in 1922 from the bed of the Kichijo River, that runs along the Tanakamiyama mountain in the Oni Province and ends into Lake Biwa in Japan. Their radiocativity has been studied along with that of crusts of similar nature found covering rock formations in the vicinity overlooking the stream. The high content in radium observed may be due to the high uranium content of the granite host rock typical of the Tanakamiyama formation.
Resumo:
The aim of this study was to determine the effects of dietary antioxidant supplementation with a-tocopherol and a-lipoic acid on cyclosporine-induced alterations to erythrocyte and plasma redox balance, and cyclosporine-induced endothelial and smooth muscle dysfunction. Rats were randomly assigned to either control, antioxidant, cyclosporine or cyclosporine + antioxidant treatments. Cyclosporine A was administered for 10 days after an 8-week feeding period. Plasma was analyzed for alpha-tocopherol, total antioxidant capacity, malondialdehyde and creatinine. Erythrocytes were analyzed for glutathione, methemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Vascular endothelial and smooth muscle function was determined in vitro. Antioxidant supplementation resulted in significant increases in erythrocyte a-tocopherol concentration and glutathione peroxidase activity in both of the antioxidant-supplemented groups. Cyclosporine administration caused significant decreases in glutathione concentration, methemoglobin concentration and superoxide dismutase activity. Antioxidant supplementation attenuated the cyclosporine-induced decrease in superoxide dismutase activity. Cyclosporine therapy impaired both endothelium-independent and -dependent relaxation of the thoracic aorta, and this was attenuated by antioxidant supplementation. In summary, dietary supplementation with alpha-tocopherol and alpha-lipoic acid attenuated the cyclosporine-induced decrease in erythrocyte superoxide dismutase activity and attenuated cyclosporine-induced vascular dysfunction.
Resumo:
The major and some of the minor constituents and the rate of accumulation of manganese nodules in the western North Pacific were determined. Manganese concentration in the nodules ranged from 20 to 30 per cent in the acid soluble fraction. As to the rare earth concentration, enrichment of cerium was observed in the manganese nodule as compared with that in shales or sea water. Thorium to uranium ratio in the nodule ranged from 9.4 to 14.3, which was very much higher than that in sea water. From the distribution of excess ionium, excess protactinium and Io/Th ratio, a rate of accumulation of 7 mm per million years was obtained with the surface layer of several mm in thickness of the JEDS-4-E4 nodule.
Resumo:
High-resolution records of the natural radionuclide 230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the 230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of 230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.
Resumo:
The early oceanographic history of the Arctic Ocean is important in regulating, and responding to, climatic changes. However, constraints on its oceanographic history preceding the Quaternary (the past 1.8 Myr) have become available only recently, because of the difficulties associated with obtaining continuous sediment records in such a hostile setting. Here, we use the neodymium isotope compositions of two sediment cores recovered near the North Pole to reconstruct over the past ~5 Myr the sources contributing to Arctic Intermediate Water, a water mass found today at depths of 200 to 1,500 m. We interpret high neodymium ratios for the period between 15 and 2 Myr ago, and for the glacial periods thereafter, as indicative of weathering input from the Siberian Putoranan basalts into the Arctic Ocean. Arctic Intermediate Water was then derived from brine formation in the Eurasian shelf regions, with only a limited contribution of intermediate water from the North Atlantic. In contrast, the modern circulation pattern, with relatively high contributions of North Atlantic Intermediate Water and negligible input from brine formation, exhibits low neodymium isotope ratios and is typical for the interglacial periods of the past 2 Myr. We suggest that changes in climatic conditions and the tectonic setting were responsible for switches between these two modes.