998 resultados para Algorithms genetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective. (C) 2012 The Authors Journal of Fish Biology (C) 2012 The Fisheries Society of the British Isles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproduction records from 2137 cows first mated at 2 years of age and recorded through to 8.5 years of age were used to study the genetics of early and lifetime reproductive performance from two genotypes (1020 Brahman and 1117 Tropical Composite) in tropical Australian production systems. Regular ultrasound scanning of the reproductive tract, coupled with full recording of mating, calving and weaning histories, allowed a comprehensive evaluation of a range of reproductive traits. Results showed components traits of early reproductive performance had moderate to high heritabilities, especially in Brahmans. The heritability of lactation anoestrous interval in 3-year-old cows was 0.51 +/- 0.18 and 0.26 +/- 0.11 for Brahman and Tropical Composite, respectively. Heritabilities of binary reproductive output traits (conception rate, pregnancy rate, calving rate and weaning rate) from first and second matings were generally moderate to high on the underlying scale. Estimates ranged from 0.15 to 0.69 in Brahman and 0.15 to 0.34 in Tropical Composite, but were considerably lower when expressed on the observed scale, particularly for those traits with high mean levels. Heritabilities of lifetime reproduction traits were low, with estimates of 0.11 +/- 0.06 and 0.07 +/- 0.06 for lifetime annual weaning rate in Brahman and Tropical Composite, respectively. Significant differences in mean reproductive performance were observed between the two genotypes, especially for traits associated with anoestrus in first-lactation cows. Genetic correlations between early-in-life reproductive measures and lifetime reproduction traits were moderate to high. Genetic correlations between lactation anoestrous interval and lifetime annual weaning rate were -0.62 +/- 0.24 in Brahman and -0.87 +/- 0.32 in Tropical Composite. The results emphasise the substantial opportunity that exists to genetically improve weaning rates in tropical beef cattle breeds by focusing recording and selection on early-in-life female reproduction traits, particularly in Brahman for traits associated with lactation anoestrus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine species generally have large population sizes, continuous distributions and high dispersal capacity. Despite this, they are often subdivided into separate populations, which are the basic units of fisheries management. For example, populations of some fisheries species across the deep water of the Timor Trench are genetically different, inferring minimal movement and interbreeding. When connectivity is higher than the Timor Trench example, but not so high that the populations become one, connectivity between populations is crinkled. Crinkled connectivity occurs when migration is above the threshold required to link populations genetically, but below the threshold for demographic links. In future, genetic estimates of connectivity over crinkled links could be uniquely combined with other data, such as estimates of population size and tagging and tracking data, to quantify demographic connectedness between these types of populations. Elasmobranch species may be ideal targets for this research because connectivity between populations is more likely to be crinkled than for finfish species. Fisheries stock-assessment models could be strengthened with estimates of connectivity to improve the strategic and sustainable harvesting of biological resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm is described for developing a hierarchy among a set of elements having certain precedence relations. This algorithm, which is based on tracing a path through the graph, is easily implemented by a computer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New algorithms for the continuous wavelet transform are developed that are easy to apply, each consisting of a single-pass finite impulse response (FIR) filter, and several times faster than the fastest existing algorithms. The single-pass filter, named WT-FIR-1, is made possible by applying constraint equations to least-squares estimation of filter coefficients, which removes the need for separate low-pass and high-pass filters. Non-dyadic two-scale relations are developed and it is shown that filters based on them can work more efficiently than dyadic ones. Example applications to the Mexican hat wavelet are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm is described for developing a hierarchy among a set of elements having certain precedence relations. This algorithm, which is based on tracing a path through the graph, is easily implemented by a computer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithms are described for the basic arithmetic operations and square rooting in a negative base. A new operation called polarization that reverses the sign of a number facilitates subtraction, using addition. Some special features of the negative-base arithmetic are also mentioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetics, the science of heredity and variation in living organisms, has a central role in medicine, in breeding crops and livestock, and in studying fundamental topics of biological sciences such as evolution and cell functioning. Currently the field of genetics is under a rapid development because of the recent advances in technologies by which molecular data can be obtained from living organisms. In order that most information from such data can be extracted, the analyses need to be carried out using statistical models that are tailored to take account of the particular genetic processes. In this thesis we formulate and analyze Bayesian models for genetic marker data of contemporary individuals. The major focus is on the modeling of the unobserved recent ancestry of the sampled individuals (say, for tens of generations or so), which is carried out by using explicit probabilistic reconstructions of the pedigree structures accompanied by the gene flows at the marker loci. For such a recent history, the recombination process is the major genetic force that shapes the genomes of the individuals, and it is included in the model by assuming that the recombination fractions between the adjacent markers are known. The posterior distribution of the unobserved history of the individuals is studied conditionally on the observed marker data by using a Markov chain Monte Carlo algorithm (MCMC). The example analyses consider estimation of the population structure, relatedness structure (both at the level of whole genomes as well as at each marker separately), and haplotype configurations. For situations where the pedigree structure is partially known, an algorithm to create an initial state for the MCMC algorithm is given. Furthermore, the thesis includes an extension of the model for the recent genetic history to situations where also a quantitative phenotype has been measured from the contemporary individuals. In that case the goal is to identify positions on the genome that affect the observed phenotypic values. This task is carried out within the Bayesian framework, where the number and the relative effects of the quantitative trait loci are treated as random variables whose posterior distribution is studied conditionally on the observed genetic and phenotypic data. In addition, the thesis contains an extension of a widely-used haplotyping method, the PHASE algorithm, to settings where genetic material from several individuals has been pooled together, and the allele frequencies of each pool are determined in a single genotyping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever expanding growth of the wireless access to the Internet in recent years has led to the proliferation of wireless and mobile devices to connect to the Internet. This has created the possibility of mobile devices equipped with multiple radio interfaces to connect to the Internet using any of several wireless access network technologies such as GPRS, WLAN and WiMAX in order to get the connectivity best suited for the application. These access networks are highly heterogeneous and they vary widely in their characteristics such as bandwidth, propagation delay and geographical coverage. The mechanism by which a mobile device switches between these access networks during an ongoing connection is referred to as vertical handoff and it often results in an abrupt and significant change in the access link characteristics. The most common Internet applications such as Web browsing and e-mail make use of the Transmission Control Protocol (TCP) as their transport protocol and the behaviour of TCP depends on the end-to-end path characteristics such as bandwidth and round-trip time (RTT). As the wireless access link is most likely the bottleneck of a TCP end-to-end path, the abrupt changes in the link characteristics due to a vertical handoff may affect TCP behaviour adversely degrading the performance of the application. The focus of this thesis is to study the effect of a vertical handoff on TCP behaviour and to propose algorithms that improve the handoff behaviour of TCP using cross-layer information about the changes in the access link characteristics. We begin this study by identifying the various problems of TCP due to a vertical handoff based on extensive simulation experiments. We use this study as a basis to develop cross-layer assisted TCP algorithms in handoff scenarios involving GPRS and WLAN access networks. We then extend the scope of the study by developing cross-layer assisted TCP algorithms in a broader context applicable to a wide range of bandwidth and delay changes during a handoff. And finally, the algorithms developed here are shown to be easily extendable to the multiple-TCP flow scenario. We evaluate the proposed algorithms by comparison with standard TCP (TCP SACK) and show that the proposed algorithms are effective in improving TCP behavior in vertical handoff involving a wide range of bandwidth and delay of the access networks. Our algorithms are easy to implement in real systems and they involve modifications to the TCP sender algorithm only. The proposed algorithms are conservative in nature and they do not adversely affect the performance of TCP in the absence of cross-layer information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of sequential data is required in many diverse areas such as telecommunications, stock market analysis, and bioinformatics. A basic problem related to the analysis of sequential data is the sequence segmentation problem. A sequence segmentation is a partition of the sequence into a number of non-overlapping segments that cover all data points, such that each segment is as homogeneous as possible. This problem can be solved optimally using a standard dynamic programming algorithm. In the first part of the thesis, we present a new approximation algorithm for the sequence segmentation problem. This algorithm has smaller running time than the optimal dynamic programming algorithm, while it has bounded approximation ratio. The basic idea is to divide the input sequence into subsequences, solve the problem optimally in each subsequence, and then appropriately combine the solutions to the subproblems into one final solution. In the second part of the thesis, we study alternative segmentation models that are devised to better fit the data. More specifically, we focus on clustered segmentations and segmentations with rearrangements. While in the standard segmentation of a multidimensional sequence all dimensions share the same segment boundaries, in a clustered segmentation the multidimensional sequence is segmented in such a way that dimensions are allowed to form clusters. Each cluster of dimensions is then segmented separately. We formally define the problem of clustered segmentations and we experimentally show that segmenting sequences using this segmentation model, leads to solutions with smaller error for the same model cost. Segmentation with rearrangements is a novel variation to the segmentation problem: in addition to partitioning the sequence we also seek to apply a limited amount of reordering, so that the overall representation error is minimized. We formulate the problem of segmentation with rearrangements and we show that it is an NP-hard problem to solve or even to approximate. We devise effective algorithms for the proposed problem, combining ideas from dynamic programming and outlier detection algorithms in sequences. In the final part of the thesis, we discuss the problem of aggregating results of segmentation algorithms on the same set of data points. In this case, we are interested in producing a partitioning of the data that agrees as much as possible with the input partitions. We show that this problem can be solved optimally in polynomial time using dynamic programming. Furthermore, we show that not all data points are candidates for segment boundaries in the optimal solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix decompositions, where a given matrix is represented as a product of two other matrices, are regularly used in data mining. Most matrix decompositions have their roots in linear algebra, but the needs of data mining are not always those of linear algebra. In data mining one needs to have results that are interpretable -- and what is considered interpretable in data mining can be very different to what is considered interpretable in linear algebra. --- The purpose of this thesis is to study matrix decompositions that directly address the issue of interpretability. An example is a decomposition of binary matrices where the factor matrices are assumed to be binary and the matrix multiplication is Boolean. The restriction to binary factor matrices increases interpretability -- factor matrices are of the same type as the original matrix -- and allows the use of Boolean matrix multiplication, which is often more intuitive than normal matrix multiplication with binary matrices. Also several other decomposition methods are described, and the computational complexity of computing them is studied together with the hardness of approximating the related optimization problems. Based on these studies, algorithms for constructing the decompositions are proposed. Constructing the decompositions turns out to be computationally hard, and the proposed algorithms are mostly based on various heuristics. Nevertheless, the algorithms are shown to be capable of finding good results in empirical experiments conducted with both synthetic and real-world data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.