884 resultados para Alcoholic beverage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Replaces ATF P 5110.5 and ATF P 5130.1."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The close association of excessive alcohol consumption and clinical expression of hemochromatosis has been of widespread interest for many years. In most populations of northern European extraction, more than 90% of patients with overt hemochromatosis are homozygous for the C282Y mutation in the HFE gene. Nevertheless, the strong association of heavy alcohol intake with the clinical expression of hemochromatosis remains. We (individually or in association with colleagues from our laboratories) have performed three relevant studies in which this association was explored. In the first, performed in 1975 before the cloning of the HFE gene, the frequency of clinical symptoms and signs was compared in patients with classical hemochromatosis who consumed 100 g or more of alcohol per day versus in nondrinkers or moderate drinkers who consumed less than 100 g of alcohol per day. The results showed no difference between the two groups except for features of complications of alcoholism in the first group, especially jaundice, peripheral neuritis, and hepatic failure. Twenty-five percent of those with heavy alcohol consumption showed histologic features of alcoholic liver disease (including cirrhosis) together with heavy iron overload. It was concluded that these patients had the genetic disease complicated by alcoholic liver disease. In the second study (2002), 206 subjects with classical HFE-associated hemochromatosis in whom liver biopsy had been performed were evaluated to quantify the contribution of excess alcohol consumption to the development of cirrhosis in hemochromatosis. Cirrhosis was approximately nine times more likely to develop in subjects with hemochromatosis who consumed more than 60 g of alcohol per day than in those who drank less than this amount. In the third study (2002), 371 C282Y-homozygous relatives of patients with HFE-associated hemochromatosis were assessed. Eleven subjects had cirrhosis on liver biopsy and four of these drank 60 g or more of alcohol per day. The reason why heavy alcohol consumption accentuates the clinical expression of hemochromatosis is unclear. Increased dietary iron or increased iron absorption is unlikely. The most likely explanation would seem to be the added co-factor effect of iron and alcohol, both of which cause oxidative stress, hepatic stellate cell activation, and hepatic fibrogenesis. In addition, the cumulative effects of other forms of liver injury may result when iron and alcohol are present concurrently. Clearly, the addition of dietary iron in subjects homozygous for hemochromatosis would be unwise. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcoholism results in changes in the human brain that reinforce the cycle of craving and dependency, and these changes are manifest in the pattern of expression of proteins in key cells and brain areas. Described here is a proteomics-based approach aimed at determining the identity of proteins in the superior frontal cortex (SFC) of the human brain that show different levels of expression in autopsy samples taken from healthy and long-term alcohol abuse subjects. Soluble protein fractions constituting pooled samples combined from SFC biopsies of four well-characterized chronic alcoholics (mean consumption > 80 g ethanol/day throughout adulthood) and four matched controls (< 20 g/day) were generated. Two-dimensional electrophoresis was performed in triplicate on alcoholic and control samples and the resultant protein profiles analyzed for differential expression. Overall, 182 proteins differed by the criterion of twofold or more between case and control samples. Of these, 139 showed significantly lower expression in alcoholics, 35 showed significantly higher expression, and 8 were new or had disappeared. To date, 63 proteins have been identified using MALDI-MS and MS-MS. The finding that the expression level of differentially expressed proteins is preponderantly lower in the alcoholic brain is supported by recent results from parallel studies using microarray mRNA transcript.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-D-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor subunit mRNA expression, and GABB2 and DRD2B genotypes with p subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence. (C) 2004 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A competitive RT-PCR assay was used to quantify the expression of the GABA(A) receptor beta(1), beta(2) and beta(3) isoform mRNA transcripts in the superior frontal cortex and motor cortex of 21 control and 22 alcoholic cases. A single set of primers was designed that permitted amplification of all three transcripts and the internal standard simultaneously; differentiation of the individual transcripts was achieved by restriction enzyme digestion. Construction of a standard curve, using the internal standard and a concentration range of beta(2) cRNA-enabled quantitation of mRNA expression levels. No significant difference in mRNA expression was found between the control and alcoholic case groups in either the superior frontal or motor cortex for the beta(2) or beta(3) isoforms. A significant interaction was found between isoform and area, although, the two case groups did not partition on this measure. The interaction was due to a significant difference between superior frontal and motor cortex for the beta(3) isoform; this regional comparison was not significant for beta(2) mRNA. Age at death and post-mortem delay (PMD) had no significant effect on beta mRNA expression in either case group in either region. A beta(1) signal could not be detected in the RT-PCR assay. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol dependence may result from neuroadaptation involving alteration of gene expression after long-term alcohol exposure. The systematic study of gene expression profiles of the human alcoholic brain was initiated using the method of polymerase chain reaction (PCR)-differential display and was followed by DNA microarray. To date, more than 100 alcohol-responsive genes have been identified from the frontal cortex, motor cortex and nucleus accumbens of the human brain. These genes have a wide range of functions in the brain and indicate diverse actions of alcohol on neuronal function. This review discusses the current information on the genetic basis of alcoholism and the induction and characterization of these alcohol-responsive genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to compile data on the mechanism and severity of injuries associated with hot beverage burns in children. We identified 152 children over a 3-year period who attended a tertiary level burns center, representing 18% of all children treated. Their median age was 17.5 months and median body surface area burned was 4% (range, 0.25% to 32%). Significantly, 52% of children required admission, 18% received a split skin graft, and 26% required long-term scar management. In 70% of all cases, the mechanism of injury was the child pulling the hot beverage over himself or herself. In 80% of incidents, a primary care giver witnessed the injury. These findings indicate that scalding from hot beverages carries significant morbidity and is an important pediatric public health issue. It is clear that further research towards effective education programs for primary caregivers is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism (ISBRA) in Mannheim, Germany, in October, 2004. Chronic alcoholism follows a fluctuating course, which provides a naturalistic experiment in vulnerability, resilience, and recovery of human neural systems in response to presence, absence, and history of the neurotoxic effects of alcoholism. Alcohol dependence is a progressive chronic disease that is associated with changes in neuroanatomy, neurophysiology, neural gene expression, psychology, and behavior. Specifically, alcohol dependence is characterized by a neuropsychological profile of mild to moderate impairment in executive functions, visuospatial abilities, and postural stability, together with relative sparing of declarative memory, language skills, and primary motor and perceptual abilities. Recovery from alcoholism is associated with a partial reversal of CNS deficits that occur in alcoholism. The reversal of deficits during recovery from alcoholism indicates that brain structure is capable of repair and restructuring in response to insult in adulthood. Indirect support of this repair model derives from studies of selective neuropsychological processes, structural and functional neuroimaging studies, and preclinical studies on degeneration and regeneration during the development of alcohol dependence and recovery from dependence. Genetics and brain regional specificity contribute to unique changes in neuropsychology and neuroanatomy in alcoholism and recovery. This symposium includes state-of-the-art presentations on changes that occur during active alcoholism as well as those that may occur during recovery-abstinence from alcohol dependence. Included are human neuroimaging and neuropsychological assessments, changes in human brain gene expression, allelic combinations of genes associated with alcohol dependence and preclinical studies investigating mechanisms of alcohol induced neurotoxicity, and neuroprogenetor cell expansion during recovery from alcohol dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol dependence is characterized by tolerance, physical dependence, and craving. The neuroadaptations underlying these effects of chronic alcohol abuse are likely due to altered gene expression. Previous gene expression studies using human post-mortem brain demonstrated that several gene families were altered by alcohol abuse. However, most of these changes in gene expression were small. It is not clear if gene expression profiles have sufficient power to discriminate control from alcoholic individuals and how consistent gene expression changes are when a relatively large sample size is examined. In the present study, microarray analysis (similar to 47 000 elements) was performed on the superior frontal cortex of 27 individual human cases ( 14 well characterized alcoholics and 13 matched controls). A partial least squares statistical procedure was applied to identify genes with altered expression levels in alcoholics. We found that genes involved in myelination, ubiquitination, apoptosis, cell adhesion, neurogenesis, and neural disease showed altered expression levels. Importantly, genes involved in neurodegenerative diseases such as Alzheimer's disease were significantly altered suggesting a link between alcoholism and other neurodegenerative conditions. A total of 27 genes identified in this study were previously shown to be changed by alcohol abuse in previous studies of human post-mortem brain. These results revealed a consistent re-programming of gene expression in alcohol abusers that reliably discriminates alcoholic from non-alcoholic individuals.