928 resultados para Al2O3-TiO2
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure
Resumo:
This study proposes to find a biodiesel through transesterification of rice bran oil with KI/Al2O3 checking the influence of two types of alumina (Amorphous and Crystalline) for conversion into methyl esters. The catalyst was synthesized by the wet impregnation method. Adding 30 mL of 35% KI(aq.) in 10 g of alumina, under stirring at 80 °C for 3 hours. The reaction conditions used in this study were optimized, with a molar ratio methanol:oil of 15:1, 8 h of reaction time and reflux temperature. The catalyst amount was varied in the range of 1 to 5 % wt. The solid catalysts materials were analyzed by: x-ray diffraction (XRD), thermogravimetry (TG), N2 adsorption/desorption, scanning electron microscopy (SEM) and basicity, for the identification of its structure and composition, verifying the presence of basic sites. The results showed that Al2O3(A) presents an amorphous structure, high surface area and a better catalytic activity, in relation to the catalyst synthesized with Al2O3(C) support that proved to have a more crystalline structure, having as well, a lesser surface area, enabling difficulties for the incorporation of active sites. The obtained biodiesel with 5% wt. KI/Al2O3(A) presented physicochemical properties within the standards specified by the Resolution No 7/2008 ANP and obtained the best reaction yield with 95.2%, according to quantitative measurement from the TG, which showed 96.2% conversion into methyl esters. It was furthermore found that with the increasing amount of the quantity of the catalyst in the reaction, there was also an increase in the ester content obtained. The specific mass and the kinematic viscosity were reduced with the increase of the amount of quantity of the catalyst, indicating an increase in the conversion of triglycerides
Resumo:
Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system
Resumo:
It is known that the head office world energetics is leaning in the fossil fuels. However, the world panorama is changing quickly, for linked reasons to three of the humanity's great concerns in that century beginning: environment, global economy and energy. The biodiesel production is based on the transesterificação of vegetable oils or animal fats, using catalysts homogeneous or heterogeneous. The process of heterogeneous transesterificação presents lower conversions in comparison with the homogeneous, however, it doesn't present corrosion problems and it reduces to the occurrence of parallel reactions as saponification. In this sense, this work has for purpose the synthesis of a heterogeneous catalyst, KNO3/Al2O3, that soon afterwards was used in the reaction of transesterificação of the oil of the Helianthus annuus L. (sunflower). The solid materials (it supports and catalyst) they were analyzed by diffraction of ray-X (XRD) and electronic microscope of sweeping (MEV). After the analysis of Al2O3, a structure monophase amorphous tetragonal was verified, with characteristic patterns of that material, what could not be visualized in the difratograma of the catalyst. The biodiesel obtained with 4% wt. of KNO3/Al2O3 it was what obtained a better cinematic viscosity 8,3 mm2/s, comparing with the norms of ANP, and it also presented the best conversion tax in ethyl ésteres, in accordance with the quantitative measure starting from TG, that was of 60%. While the biodiesel with 6% wt. and with 8% wt. of KNO3/Al2O3 it was it that no transesterificou, because it was observed in the analysis termogravimétrica of those two materials, a single thermal event, that it corresponds the decomposition or volatilization of the triglycerides
Resumo:
Although there are many studies on urban dust contamination by heavy metals in developed countries, little attention has been paid to this type of study in developing countries, including Brazil. Therefore, a series of investigations were performed to provide signatures of heavy metals in urban dust and assess the potential sources in the city of Natal - RN-Brazil. The fraction of these sediments was studied to pass through a sieve of 63 micrometers. For the study analyzed two groups of samples, one collected in September 2009 at the end of the rainy season (9 samples) and one collected in January 2010 in the dry season (21 samples). So in all, thirty sediment samples were collected from the street. Then, in Fluorescence Spectrometry X-rays were determined major elements SiO2, Na2O, K2O, Al2O3, MgO, P2O5, Fe2O3, MnO, TiO2 and CaO, and trace Rb, Cr, Ni, Cu, Zn, Sr and Pb by an ICPOES was determined Zn, V, Na, K, Ni, Mn, Mg, P, Fe, Cr, Cu, Pb, Ba, Ca and Al from leaching HCl 0.5 mol L-1 . The results of the concentrations of elements show that the greater presence of these occurs in the dry season, except for Si which is higher in the rainy season. Analyses by geoaccumulation Index (IGEO) Enrichment Factor (EF), Contamination Factor (CF), analysis correlation and Hierarchical Cluster, confirm that Zn, Cu and Pb is anthropogenic character. Zinc may be derived from various sources related to motor vehicles or the road signs and street grids. The elements Na, K, Mg and Ca may be related to droplets suspended in air containing cations and anions present in seawater (salty), common in Christmas throughout the year, brought by winds SE-NW. The elements Na, Mg, Ca and K are the most abundant in seawater and were analyzed in this study. This indicates that the source of these additional elements detected by analyzing the contamination factor may be the very sea. Moreover, Ni, Fe, Cr and Ba can be either as a source of anthropogenic geogênica. The source of Ca is different, because it comes in lime and paint (painting guides of buildings and streets) in construction materials, but may also be present in sediments in the fragments of shells or carbonate bioclasts common in the coastal area
Resumo:
A new self-sustainable film was prepared through the sol-gel modified method, previously employed in our research group; sodium alginate was used as the polymer matrix, along with plasticizer glycerol, doped with titanium dioxide (TiO2) and tungsten trioxide (WO3). By varying WO3 concentration (0,8, 1,6, 2,4 and 3,2 μmol) and keeping TiO2 concentration constant (059 mmol), it was possible to study the contribution of these oxides on the obtained films morphological and electrical properties. Self-sustainable films have analyzed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XDR), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electrochemical Impedance Spectroscopy (EIS). By the IR specters, it was possible identify the TiO2, and posteriorly WO3, addition has provided dislocation of alginate characteristics bands to smaller vibrations frequencies indicating an electrostatic interaction between the oxides and the polymer matrix. Diffractograms show predominance of the amorphous phase in the films. SEM, along with EDX, analysis revealed self-sustainable films showed surface with no cracks and relative dispersion of the oxides throughout the polymer matrix. From Impedance analysis, it was observe increasing WO3 concentration to 2,4 μmol provided a reduction of films resistive properties and consequent improvement of conductive properties
Resumo:
This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation
Resumo:
Structural and textural studies of a CuO/TiO2 System modified by cerium oxide were conducted using Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and N-2 absorption (BET specific surface area). The introduction of a minor amount of CeO2 (Ce0.09Ti0.82O1.91CU0.09 sample) resulted in a material with the maximum surface area value. The results of Raman spectroscopy revealed the presence of only two crystalline phases, TiO2 anatase and CeO2 cerianite, with well-dispersed copper species. TEM micrographs showed a trend toward smaller TiO2 crystallites when the cerium oxide content was increased. The XPS analysis indicated the rise of a second peak in Ti 2p spectra with the increasing amount of CeO2 located at higher binding energies than that due to the Till in a tetragonal symmetry. The CuO/TiO2 system modified by CeO2 displayed a superior performance for methanol dehydrogenation than the copper catalyst supported only on TiO2 or CeO2.
Resumo:
X-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and x-ray absorption spectroscopy (XAS) techniques have been applied to characterize the surface composition and structure of a series of CuO-TiO2-CeO2 catalysts. For a small loading of cerium, ceria was mainly dispersed on the titania surface and a minor amount of CeO2 crystallite appeared. At higher loading of cerium, the CeO2 phase increased and the atomic Ce/Ti ratio values were smaller than the nominal composition, as a consequence of cerium agglomeration. This result suggests that only a fraction of cerium can be spread on the titania surface. For titanium-based mixed oxide, we observed that cerium is found as Ce3+ uniquely on the surface. The atomic Cu/(Ce+Ti) ratio values showed no influence from cerium concentration on the dispersion of copper, although the copper on the surface was shown to be dependent on the cerium species. For samples with a high amount of cerium, XPS analysis indicated the raise of second titanium species due cerium with spin-orbit components at higher binding energies than those presented by Ti4+ in a tetragonal structure. The structural results obtained by XAS are consistent with those obtained by XRD and XPS. (C) 2001 American Vacuum Society.
Resumo:
The photoelectrochemical degradation of p-nitrophenol (PNP) was investigated using titanium dioxide thin-film photoelectrode. The effects of different supporting electrolytes, pH, applied potential and PNP concentration were examined and discussed. Complete photodegradation was obtained in perchlorate medium at pH 2 when the photoanode was biased at +1.0 V (versus SCE) during a 3-h experiment. Under these conditions, carbon removal of approximately 60% was achieved. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N-2 adsorption at 77 K, X-ray Diffractometry (XRD), Scanning Electronic Microscopy (SEM/EDX) and Fourier Transform Infrared Spectroscopy (FT-IR). The surface area increases with the vanadia loading from 24 m(2) g(-1) for pure TiO2 to 87 m(2) g(-1) for 9 wt% of V2O5. The rutile form is predominant for pure TiO2 but becomes enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the diffractograms of the catalysts. Analysis by SEM showed heterogeneous granulation of particles with high vanadium dispersion. Two species of surface vanadium were observed by FT-IR spectroscopy: a monomeric vanadyl and polymeric vanadates. The vanadyl/vanadate ratio remains practically constant. Ethanol oxidation was used as a catalytic test in a temperature range from 350 to 560 K. The catalytic activity starts around 380 K. For the sample with 9 wt% of vanadia, the conversion of ethanol into acetaldehyde as the main product was approximately 90% at 473 K.
Resumo:
An investigation was made on the adsorption and kinetics of photodegradation of potassium hydrogenphthalate in an aqueous suspension of TiO2. Two models, Langmuir and Freundlich, were used to describe the adsorption process and the model proposed by Langmuir-Hinshelwood (L-H) was employed to describe the kinetics of the photodecomposition reactions of hydrogenphthalate. The results of the adsorptions were fitted to the models proposed by Langmuir and Freundlich. Adsorption was found to be a function of the temperature, with adsorption capacity increasing from 2.4 to 4.5 mg/g when the temperature rose from 20 to 30 degrees C. The kinetic model indicates that the rate constant, k, of the first order reaction, is high in the 10.0 to 100 mg/l interval, which is coherent with the low value of the adsorption constant, K. The results fitted to the L-H model led to an equation that, within the range of concentrations studied here, theoretically allows one to evaluate the photodegradation rate. (c) 2005 Elsevier Ltd. All rights reserved.