981 resultados para Adsorbed Solution theory
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
Purpose – To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain. Design/methodology/approach – Earlier works have involved the similar problem but for stationary case (time-independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time-dependent case. Findings – The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method. Research limitations/implications – The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non-linear Navier-Stokes equation. Practical implications – Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements. Originality/value – A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
Crotonaldehyde (2-butenal) adsorption over gold sub-nanometer particles, and the influence of co-adsorbed oxygen, has been systematically investigated by computational methods. Using density functional theory, the adsorption energetics of crotonaldehyde on bare and oxidised gold clusters (Au , d = 0.8 nm) were determined as a function of oxygen coverage and coordination geometry. At low oxygen coverage, sites are available for which crotonaldehyde adsorption is enhanced relative to bare Au clusters by 10 kJ mol. At higher oxygen coverage, crotonaldehyde is forced to adsorb in close proximity to oxygen weakening adsorption by up to 60 kJ mol relative to bare Au. Bonding geometries, density of states plots and Bader analysis, are used to elucidate crotonaldehyde bonding to gold nanoparticles in terms of partial electron transfer from Au to crotonaldehyde, and note that donation to gold from crotonaldehyde also becomes significant following metal oxidation. At high oxygen coverage we find that all molecular adsorption sites have a neighbouring, destabilising, oxygen adatom so that despite enhanced donation, crotonaldehyde adsorption is always weakened by steric interactions. For a larger cluster (Au, d = 1.1 nm) crotonaldehyde adsorption is destabilized in this way even at a low oxygen coverage. These findings provide a quantitative framework to underpin the experimentally observed influence of oxygen on the selective oxidation of crotyl alcohol to crotonaldehyde over gold and gold-palladium alloys. © 2014 the Partner Organisations.
Resumo:
The extremely surface sensitive technique of metastable de-excitation spectroscopy (MDS) has been utilized to probe the bonding and reactivity of crotyl alcohol over Pd(111) and provide insight into the selective oxidation pathway to crotonaldehyde. Auger de-excitation (AD) of metastable He (23S) atoms reveals distinct features associated with the molecular orbitals of the adsorbed alcohol, corresponding to emission from the hydrocarbon skeleton, the O n nonbonding, and C═C π states. The O n and C═C π states of the alcohol are reversed when compared to those of the aldehyde. Density functional theory (DFT) calculations of the alcohol show that an adsorption mode with both C═C and O bonds aligned somewhat parallel to the surface is energetically favored at a substrate temperature below 200 K. Density of states calculations for such configurations are in excellent agreement with experimental MDS measurements. MDS revealed oxidative dehydrogenation of crotyl alcohol to crotonaldehyde between 200 and 250 K, resulting in small peak shifts to higher binding energy. Intramolecular changes lead to the opposite assignment of the first two MOs in the alcohol versus the aldehyde, in accordance with DFT and UPS studies of the free molecules. Subsequent crotonaldehyde decarbonylation and associated propylidyne formation above 260 K could also be identified by MDS and complementary theoretical calculations as the origin of deactivation and selectivity loss. Combining MDS and DFT in this way represents a novel approach to elucidating surface catalyzed reaction pathways associated with a “real-world” practical chemical transformation, namely the selective oxidation of alcohols to aldehydes.
Resumo:
Stochastic arithmetic has been developed as a model for exact computing with imprecise data. Stochastic arithmetic provides confidence intervals for the numerical results and can be implemented in any existing numerical software by redefining types of the variables and overloading the operators on them. Here some properties of stochastic arithmetic are further investigated and applied to the computation of inner products and the solution to linear systems. Several numerical experiments are performed showing the efficiency of the proposed approach.
Resumo:
The “Nash program” initiated by Nash (Econometrica 21:128–140, 1953) is a research agenda aiming at representing every axiomatically determined cooperative solution to a game as a Nash outcome of a reasonable noncooperative bargaining game. The L-Nash solution first defined by Forgó (Interactive Decisions. Lecture Notes in Economics and Mathematical Systems, vol 229. Springer, Berlin, pp 1–15, 1983) is obtained as the limiting point of the Nash bargaining solution when the disagreement point goes to negative infinity in a fixed direction. In Forgó and Szidarovszky (Eur J Oper Res 147:108–116, 2003), the L-Nash solution was related to the solution of multiciteria decision making and two different axiomatizations of the L-Nash solution were also given in this context. In this paper, finite bounds are established for the penalty of disagreement in certain special two-person bargaining problems, making it possible to apply all the implementation models designed for Nash bargaining problems with a finite disagreement point to obtain the L-Nash solution as well. For another set of problems where this method does not work, a version of Rubinstein’s alternative offer game (Econometrica 50:97–109, 1982) is shown to asymptotically implement the L-Nash solution. If penalty is internalized as a decision variable of one of the players, then a modification of Howard’s game (J Econ Theory 56:142–159, 1992) also implements the L-Nash solution.
Resumo:
The aim of this paper is to survey the game theory modelling of the behaviour of global players in mitigation and adaptation related to climate change. Three main fields are applied for the specific aspects of temperature rise: behaviour games, CPR problem and negotiation games. The game theory instruments are useful in analyzing strategies in uncertain circumstances, such as the occurrence and impacts of climate change. To analyze the international players’ relations, actions, attitude toward carbon emission, negotiation power and motives, several games are applied for the climate change in this paper. The solution is surveyed, too, for externality problem.
Resumo:
This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other.^
Resumo:
Queueing theory is the mathematical study of ‘queue’ or ‘waiting lines’ where an item from inventory is provided to the customer on completion of service. A typical queueing system consists of a queue and a server. Customers arrive in the system from outside and join the queue in a certain way. The server picks up customers and serves them according to certain service discipline. Customers leave the system immediately after their service is completed. For queueing systems, queue length, waiting time and busy period are of primary interest to applications. The theory permits the derivation and calculation of several performance measures including the average waiting time in the queue or the system, mean queue length, traffic intensity, the expected number waiting or receiving service, mean busy period, distribution of queue length, and the probability of encountering the system in certain states, such as empty, full, having an available server or having to wait a certain time to be served.
Resumo:
Value and reasons for action are often cited by rationalists and moral realists as providing a desire-independent foundation for normativity. Those maintaining instead that normativity is dependent upon motivation often deny that anything called '"value" or "reasons" exists. According to the interest-relational theory, something has value relative to some perspective of desire just in case it satisfies those desires, and a consideration is a reason for some action just in case it indicates that something of value will be accomplished by that action. Value judgements therefore describe real properties of objects and actions, but have no normative significance independent of desires. It is argued that only the interest-relational theory can account for the practical significance of value and reasons for action. Against the Kantian hypothesis of prescriptive rational norms, I attack the alleged instrumental norm or hypothetical imperative, showing that the normative force for taking the means to our ends is explicable in terms of our desire for the end, and not as a command of reason. This analysis also provides a solution to the puzzle concerning the connection between value judgement and motivation. While it is possible to hold value judgements without motivation, the connection is more than accidental. This is because value judgements are usually but not always made from the perspective of desires that actually motivate the speaker. In the normal case judgement entails motivation. But often we conversationally borrow external perspectives of desire, and subsequent judgements do not entail motivation. This analysis drives a critique of a common practice as a misuse of normative language. The "absolutist" attempts to use and, as philosopher, analyze normative language in such a way as to justify the imposition of certain interests over others. But these uses and analyses are incoherent - in denying relativity to particular desires they conflict with the actual meaning of these utterances, which is always indexed to some particular set of desires.
Resumo:
Abstract We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new 'Danger Theory' (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of 'grounding' the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.
Resumo:
A systematic diagrammatic expansion for Gutzwiller wavefunctions (DE-GWFs) proposed very recently is used for the description of the superconducting (SC) ground state in the two-dimensional square-lattice t-J model with the hopping electron amplitudes t (and t') between nearest (and next-nearest) neighbors. For the example of the SC state analysis we provide a detailed comparison of the method's results with those of other approaches. Namely, (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results and (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed 'grand-canonical Gutzwiller approximation' (called either GCGA or SGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a d(x2-y2) wave only for optimally and overdoped systems, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the
Resumo:
Abstract We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new 'Danger Theory' (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of 'grounding' the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.