927 resultados para Adrenal Medulla
Resumo:
CONTEXT Lipoid congenital adrenal hyperplasia (CAH) is the most severe form of CAH leading to impaired production of all adrenal and gonadal steroids. Mutations in the gene encoding steroidogenic acute regulatory protein (StAR) cause lipoid CAH. OBJECTIVE We investigated three unrelated patients of Swiss ancestry who all carried novel mutations in the StAR gene. All three subjects were phenotypic females with absent Müllerian derivatives, 46,XY karyotype, and presented with adrenal failure. METHODS AND RESULTS StAR gene analysis showed that one patient was homozygous and the other two were heterozygous for the novel missense mutation L260P. Of the heterozygote patients, one carried the novel missense mutation L157P and one had a novel frameshift mutation (629-630delCT) on the second allele. The functional ability of all three StAR mutations to promote pregnenolone production was severely attenuated in COS-1 cells transfected with the cholesterol side-chain cleavage system and mutant vs. wild-type StAR expression vectors. CONCLUSIONS These cases highlight the importance of StAR-dependent steroidogenesis during fetal development and early infancy; expand the geographic distribution of this condition; and finally establish a new, prevalent StAR mutation (L260P) for the Swiss population.
Resumo:
Retroperitoneal location of bronchogenic cysts is extremely rare. Most commonly they are encountered in the posterior mediastinum. Bronchogenic cysts arise from developmental aberrations of the tracheobronchial tree in the early embryologic period. We report a 42-year-old female patient with a retroperitoneal bronchogenic cyst in the left adrenal region. She was admitted to our hospital with epigastric pain and subsequently underwent CT of the abdomen. The examination revealed a mass related to the left adrenal gland. Endocrine tests for adrenal hypersecretion were negative. Because of the uncertain entity, laparoscopic adrenalectomy was performed. Pathological examination revealed a bronchogenic cyst in proximity to an inconspicuous left adrenal gland. Although very rare, bronchogenic cysts should be considered in the differential diagnosis of retroperitoneal cystic lesions and surgical resection pursued for symptom resolution and to establish a definitive histology.
Resumo:
Congenital Adrenal Hyperplasia (CAH), due to 21-Hydroxylase deficiency, has an estimated incidence of 1:15,000 births and can result in death, salt-wasting crisis or impaired growth. It has been proposed that early diagnosis and treatment of infants detected from newborn screening for CAH will decrease the incidence of mortality and morbidity in the affected population. The Texas Department of Health (TDH) began mandatory screening for CAH in June, 1989 and Texas is one of fourteen states to provide neonatal screening for the disorder.^ The purpose of this study was to describe the cost and effect of screening for CAH in Texas during 1994 and to compare cases first detected by screen and first detected clinically between January 1, 1990 and December 31, 1994. This study used a longitudinal descriptive research design. The data was secondary and previously collected by the Texas Department of Health. Along with the descriptive study, an economic analysis was done. The cost of the program was defined, measured and valued for four phases of screening: specimen collection, specimen testing, follow-up and diagnostic evaluation.^ There were 103 infants with Classical CAH diagnosed during the study and 71 of the cases had the more serious Salt-Wasting form of the disease. Of the infants diagnosed with Classical CAH, 60% of the cases were first detected by screen and 40% were first detected because of clinical findings before the screening results were returned. The base case cost of adding newborn screening to an existing program (excluding the cost of specimen collection) was $357,989 for 100,000 infants. The cost per case of Classical CAH diagnosed, based on the number of infants first detected by screen in 1994, was \$126,892. There were 42 infants diagnosed with the more benign Nonclassical form of the disease. When these cases were included in the total, the cost per infant to diagnose Congenital Adrenal/Hyperplasia was $87,848. ^
Resumo:
The role of adrenal and thyroid hormones on the development of chief and parietal cells was studied in the rat. Administration of corticosterone or thyroxine in the first and second postnatal weeks resulted in the precocious appearance of pepsinogen in the oxyntic gland mucosa and an increase in basal acid output. When pups were adrenalectomized or made hypothyroid, both pepsinogen and basal acid secretion were lowed. Corticosterone injection increased pepsinogen content and acid secretion to levels higher than those of control in hypothyroid and adrenalectomized rats while thyroxine had no such effect in adrenalectomized rats. Morphologically, chief cells responded to corticosterone or thyroxine with increases in both zymogen granules and RER. Chief cells, however, contained less zymogen granules and RER in adrenalectomized and hypothyroid rats. Corticosterone was effective in restoring the normal morphological appearance of chief cells in the hypothyroid rats while thyroxine had no effect in the adrenalectomized rats. In response to corticosterone or thyroxine, parietal cells in normal animals appeared to contain more mitochondria, tubulovesicles and intracellular canaliculi than those of control. Unlike chief cells, parietal cells retained normal ultrastructure in the absence of adrenal and thyroid hormones. These data indicate that (1) corticosterone is necessary for the functional and morphological development of chief cells; (2) the morphological development of parietal cells does not appear to depend upon corticosterone, (3) the effect of thyroxine on the development of chief and parietal cells is due to corticosterone. ^
Resumo:
Primary adrenal insufficiency (PAI) is a rare condition in childhood which is either inherited (mostly) or acquired. It is characterized by glucocorticoid and maybe mineralocorticoid deficiency. The most common form in children is 21-hydroxylase deficiency, which belongs to the steroid biosynthetic defects causing PAI. Newer forms of complex defects of steroid biosynthesis are P450 oxidoreductase deficiency and (apparent) cortisone reductase deficiency. Other forms of PAI include metabolic disorders, autoimmune disorders and adrenal dysgenesis, e.g. the IMAGe syndrome, for which the underlying genetic defect has been recently identified. Newer work has also expanded the genetic causes underlying isolated, familial glucocorticoid deficiency (FGD). Mild mutations of CYP11A1 or StAR have been identified in patients with FGD. MCM4 mutations were found in a variant of FGD in an Irish travelling community manifesting with PAI, short stature, microcephaly and recurrent infections. Finally, mutations in genes involved in the detoxification of reactive oxygen species were identified in patients with unsolved FGD. Most mutations were found in the enzyme nicotinamide nucleotide transhydrogenase, which uses the mitochondrial proton pump gradient to produce NADPH. NADPH is essential in maintaining high levels of reduced forms of antioxidant enzymes for the reduction of hydrogen peroxide. Similarly, mutations in the gene for TXNRD2 involved in this system were found in FGD patients, suggesting that the adrenal cortex is particularly susceptible to oxidative stress.
Resumo:
BACKGROUND: In clinical practise the high dose ACTH stimulation test (HDT) is frequently used in the assessment of adrenal insufficiency (AI). However, there is uncertainty regarding optimal time-points and number of blood samplings. The present study compared the utility of a single cortisol value taken either 30 or 60 minutes after ACTH stimulation with the traditional interpretation of the HDT. METHODS: Retrospective analysis of 73 HDT performed at a single tertiary endocrine centre. Serum cortisol was measured at baseline, 30 and 60 minutes after intravenous administration of 250 µg synthetic ACTH1-24. Adrenal insufficiency (AI) was defined as a stimulated cortisol level <550 nmol/l. RESULTS: There were twenty patients (27.4%) who showed an insufficient rise in serum cortisol using traditional HDT criteria and were diagnosed to suffer from AI. There were ten individuals who showed insufficient cortisol values after 30 minutes, rising to sufficient levels at 60 minutes. All patients revealing an insufficient cortisol response result after 60 minutes also had an insufficient result after 30 minutes. The cortisol value taken after 30 minutes did not add incremental diagnostic value in any of the cases under investigation compared with the 60 minutes' sample. CONCLUSIONS: Based on the findings of the present analysis the utility of a cortisol measurement 30 minutes after high dose ACTH injection was low and did not add incremental diagnostic value to a single measurement after 60 minutes.
Resumo:
OBJECTIVE To analyze prospectively the hypothalamic-pituitary-adrenal (HPA) axis and clinical outcome in patients treated with prednisone for exacerbated chronic obstructive pulmonary disease (COPD). DESIGN Prospective observational study. SUBJECTS AND METHODS Patients presenting to the emergency department were randomized to receive 40 mg prednisone daily for 5 or 14 days in a placebo-controlled manner. The HPA axis was longitudinally assessed with the 1 μg corticotropin test and a clinical hypocortisolism score at baseline, on day 6 before blinded treatment, at hospital discharge, and for up to 180 days of follow-up. Prednisone was stopped abruptly, irrespective of the test results. Patients discharged with pathological test results received instructions about emergency hydrocortisone treatment. RESULTS A total of 311 patients were included in the analysis. Mean basal and stimulated serum total cortisol levels were highest on admission (496±398 and 816±413 nmol/l respectively) and lowest on day 6 (235±174 and 453±178 nmol/l respectively). Pathological stimulation tests were found in 63, 38, 9, 3, and 2% of patients on day 6, at discharge, and on days 30, 90, and 180 respectively, without significant difference between treatment groups. Clinical indicators of hypocortisolism did not correlate with stimulation test results, but cortisol levels were inversely associated with re-exacerbation risk. There were no hospitalizations or deaths as a result of adrenal crisis. CONCLUSION Dynamic changes in the HPA axis occur during and after the treatment of acute exacerbations of COPD. In hypocortisolemic patients who were provided with instructions about stress prophylaxis, the abrupt termination of prednisone appeared safe.
Resumo:
Androgens are precursors for sex steroids and are predominantly produced in the human gonads and the adrenal cortex. They are important for intrauterine and postnatal sexual development and human reproduction. Although human androgen biosynthesis has been extensively studied in the past, exact mechanisms underlying the regulation of androgen production in health and disease remain vague. Here, the knowledge on human androgen biosynthesis and regulation is reviewed with a special focus on human adrenal androgen production and the hyperandrogenic disorder of polycystic ovary syndrome (PCOS). Since human androgen regulation is highly specific without a good animal model, most studies are performed on patients harboring inborn errors of androgen biosynthesis, on human biomaterials and human (tumor) cell models. In the past, most studies used a candidate gene approach while newer studies use high throughput technologies to identify novel regulators of androgen biosynthesis. Using genome wide association studies on cohorts of patients, novel PCOS candidate genes have been recently described. Variant 2 of the DENND1A gene was found overexpressed in PCOS theca cells and confirmed to enhance androgen production. Transcriptome profiling of dissected adrenal zones established a role for BMP4 in androgen synthesis. Similarly, transcriptome analysis of human adrenal NCI-H295 cells identified novel regulators of androgen production. Kinase p38α (MAPK14) was found to phosphorylate CYP17 for enhanced 17,20 lyase activity and RARB and ANGPTL1 were detected in novel networks regulating androgens. The discovery of novel players for androgen biosynthesis is of clinical significance as it provides targets for diagnostic and therapeutic use.
Resumo:
Our research team and laboratories have concentrated on two inherited endocrine disorders, congenital adrenal hyperplasia (CAH) and apparent mineralocorticoid excess, in thier investigations of the pathophysiology of adrenal steroid hormone disorders in children. CAH refers to a family of inherited disorders in which defects occur in one of the enzymatic steps required to synthesize cortisol from cholesterol in the adrenal gland. Because of the impaired cortisol secretion, adrenocorticotropic hormone levels rise due to impairment of a negative feedback system, which results in hyperplasia of the adrenal cortex. The majority of cases is due to 21-hydroxylase deficiency (21-OHD). Owing to the blocked enzymatic step, cortisol precursors accumulate in excess and are converted to potent androgens, which are secreted and cause in utero virilization of the affected female fetus genitalia in the classical form of CAH. A mild form of the 21-OHD, termed nonclassical 21-OHD, is the most common autosomal recessive disorder in humans, and occurs in 1/27 Ashkenazic Jews. Mutations in the CYP21 gene have been identified that cause both classical and nonclassical CAH. Apparent mineralocorticoid excess is a potentially fatal genetic disorder causing severe juvenile hypertension, pre- and postnatal growth failure, and low to undetectable levels of potassium, renin, and aldosterone. It is caused by autosomal recessive mutations in the HSD11B2 gene, which result in a deficiency of 11β-hydroxysteroid dehydrogenase type 2. In 1998, we reported a mild form of this disease, which may represent an important cause of low-renin hypertension.
Resumo:
An essential component of regulated steroidogenesis is the translocation of cholesterol from the cytoplasm to the inner mitochondrial membrane where the cholesterol side-chain cleavage enzyme carries out the first committed step in steroidogenesis. Recent studies showed that a 30-kDa mitochondrial phosphoprotein, designated steroidogenic acute regulatory protein (StAR), is essential for this translocation. To allow us to explore the roles of StAR in a system amenable to experimental manipulation and to develop an animal model for the human disorder lipoid congenital adrenal hyperplasia (lipoid CAH), we used targeted gene disruption to produce StAR knockout mice. These StAR knockout mice were indistinguishable initially from wild-type littermates, except that males and females had female external genitalia. After birth, they failed to grow normally and died from adrenocortical insufficiency. Hormone assays confirmed severe defects in adrenal steroids—with loss of negative feedback regulation at hypothalamic–pituitary levels—whereas hormones constituting the gonadal axis did not differ significantly from levels in wild-type littermates. Histologically, the adrenal cortex of StAR knockout mice contained florid lipid deposits, with lesser deposits in the steroidogenic compartment of the testis and none in the ovary. The sex-specific differences in gonadal involvement support a two-stage model of the pathogenesis of StAR deficiency, with trophic hormone stimulation inducing progressive accumulation of lipids within the steroidogenic cells and ultimately causing their death. These StAR knockout mice provide a useful model system in which to determine the mechanisms of StAR’s essential roles in adrenocortical and gonadal steroidogenesis.
Resumo:
Production of prostaglandins involved in renal salt and water homeostasis is modulated by regulated expression of the inducible form of cyclooxygenase-2 (COX-2) at restricted sites in the rat renal cortex. Because inflammatory COX-2 is suppressed by glucocorticoids, and prostaglandin levels in the kidney are sensitive to steroids, the sensitivity of COX expression to adrenalectomy (ADX) was investigated. By 2 weeks after ADX in mature rats, cortical COX-2 immunoreactivity increased 10-fold in the cortical thick ascending limb and macula densa. The constitutive isoform, COX-1, was unchanged. The magnitude of the changes and specificity of COX-2 immunoreactivity were validated by in situ hybridization histochemistry of COX-2 mRNA and Western blot analysis. Increased COX-2 activity (>5-fold) was documented by using a specific COX-2 inhibitor. The COX-2 up-regulation in ADX rats was reversed by replacement therapy with either corticosterone or deoxycorticosterone acetate. In normal rats, inhibition of glucocorticoid receptors with RU486 or mineralocorticoid receptors with spironolactone caused up-regulation of renal cortical COX-2. These results indicate that COX-2 expression in situ is tonically inhibited by adrenal steroids, and COX-2 is regulated by mineralocorticoids as well as glucocorticoids.
Resumo:
Hypothalamic–pituitary–adrenal underactivity has been reported in rheumatoid arthritis (RA). This phenomenon has implications with regard to the pathogenesis and treatment of the disease. The present study was designed to evaluate the secretion of the adrenal androgen dehydroepiandrosterone sulfate (DHEAS) and its relation to clinical variables in RA, spondyloarthropathy (Spa), and undifferentiated inflammatory arthritis (UIA). Eighty-seven patients (38 with RA, 29 with Spa, and 20 with UIA) were studied, of whom 54 were women. Only 12 patients (14%) had taken glucocorticoids previously. Age-matched, healthy women (134) and men (149) served as controls. Fasting blood samples were taken for determination of the erythrocyte sedimentation rate (ESR), serum DHEAS and insulin, and plasma glucose. Insulin resistance was estimated by the homeostasis-model assessment (HOMAIR). DHEAS concentrations were significantly decreased in both women and men with inflammatory arthritis (IA) (P < 0.001). In 24 patients (28%), DHEAS levels were below the lower extreme ranges found for controls. Multiple intergroup comparisons revealed similarly decreased concentrations in each disease subset in both women and men. After the ESR, previous glucocorticoid usage, current treatment with nonsteroidal anti-inflammatory drugs, duration of disease and HOMAIR were controlled for, the differences in DHEAS levels between patients and controls were markedly attenuated in women (P = 0.050) and were no longer present in men (P = 0.133). We concluded that low DHEAS concentrations are commonly encountered in IA and, in women, this may not be fully explainable by disease-related parameters. The role of hypoadrenalism in the pathophysiology of IA deserves further elucidation. DHEA replacement may be indicated in many patients with IA, even in those not taking glucocorticoids.
Resumo:
The present work develops and implements a biomathematical statement of how reciprocal connectivity drives stress-adaptive homeostasis in the corticotropic (hypothalamo-pituitary-adrenal) axis. In initial analyses with this interactive construct, we test six specific a priori hypotheses of mechanisms linking circadian (24-h) rhythmicity to pulsatile secretory output. This formulation offers a dynamic framework for later statistical estimation of unobserved in vivo neurohormone secretion and within-axis, dose-responsive interfaces in health and disease. Explication of the core dynamics of the stress-responsive corticotropic axis based on secure physiological precepts should help to unveil new biomedical hypotheses of stressor-specific system failure.
Resumo:
The orphan nuclear receptor steroidogenic factor 1 (SF-1) is expressed in the adrenal cortex and gonads and regulates the expression of several P450 steroid hydroxylases in vitro. We examined the role of SF-1 in the adrenal glands and gonads in vivo by a targeted disruption of the mouse SF-1 gene. All SF-1-deficient mice died shortly after delivery. Their adrenal glands and gonads were absent, and persistent Mullerian structures were found in all genotypic males. While serum levels of corticosterone in SF-1-deficient mice were diminished, levels of adrenocorticotropic hormone (ACTH) were elevated, consistent with intact pituitary corticotrophs. Intrauterine survival of SF-1-deficient mice appeared normal, and they had normal serum level of corticosterone and ACTH, probably reflecting transplacental passage of maternal steroids. We tested whether SF-1 is required for P450 side-chain-cleavage enzyme (P450scc) expression in the placenta, which expresses both SF-1 and P450scc, and found that in contrast to its strong activation of the P450scc gene promoter in vitro, the absence of SF-1 had no effect on P450scc mRNA levels in vivo. Although the region targeted by our disruption is shared by SF-1 and by embryonal long terminal repeat-binding protein (ELP), a hypothesized alternatively spliced product, we believe that the observed phenotype reflects absent SF-1 alone, as PCR analysis failed to detect ELP transcripts in any mouse tissue, and sequences corresponding to ELP are not conserved across species. These results confirm that SF-1 is an important regulator of adrenal and gonadal development, but its regulation of steroid hydroxylase expression in vivo remains to be established.
Resumo:
Rapid endocytosis (RE) occurs immediately after an exocytotic burst in adrenal chromaffin cells. Capacitance measurements of endoocytosis reveal that recovery of membrane is a biphasic process that is complete within 20 sec. The ultimate extent of membrane retrieval is precisely controlled and capacitance invariably returns to its prestimulation value. The mechanism of RE specifically requires intracellular Ca2+; Sr2+ and Ba2+ do not substitute, although all three cations support secretion. Thus the divalent cation receptors for RE and exocytosis must be distinct molecules. RE is dependent on GTP hydrolysis; it is blocked by GTP removal or replacement with guanosine 5'-[gamma-thio]triphosphate. In the presence of GTP, multiple rounds of secretion followed by RE could be elicited from the same cell. RE requires participation of dynamin, a guanine nucleotide binding protein, as revealed by intracellular immunological antagonism of this protein. Intact microtubules may be essential, as nocodazole also blocked RE. Whereas anti-dynamin antibodies blocked RE, anti-clathrin antibodies did not, suggesting that clathrin-coated vesicles are not involved in this form of endocytosis. RE may represent the initial step in the rapid recycling of secretory granules in the chromaffin cell.