906 resultados para Adaptive object model
Resumo:
This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand.
Resumo:
Tässä työssä on esitetty sen ohjelmiston kehittämisen prosessi, joka on tarkoitettu annettavien palveluiden valvottavaksi käyttäen prototyyppimallia. Raportti sisältää vaatimusten, kohteisiin suunnatun analyysin ja suunnittelun, realisointiprosessien kuvauksen ja prototyypin testauksen. Ohjelmiston käyttöala – antavien palveluiden valvonta. Vaatimukset sovellukselle analysoitiin ohjelmistomarkkinoiden perusteella sekä ohjelmiston engineeringin periaatteiden mukaisesti. Ohjelmiston prototyyppi on realisoitu käyttäen asiakas-/palvelinhybridimallia sekä ralaatiokantaa. Kehitetty ohjelmisto on tarkoitettu venäläisille tietokonekerhoille, jotka erikoistuvat pelipalvelinten antamiseen.
Resumo:
Tämä diplomityökuuluu tietoliikenneverkkojen suunnittelun tutkimukseen ja pohjimmiltaan kohdistuu verkon mallintamiseen. Tietoliikenneverkkojen suunnittelu on monimutkainen ja vaativa ongelma, joka sisältää mutkikkaita ja aikaa vieviä tehtäviä. Tämä diplomityö esittelee ”monikerroksisen verkkomallin”, jonka tarkoitus on auttaa verkon suunnittelijoita selviytymään ongelmien monimutkaisuudesta ja vähentää verkkojen suunnitteluun kuluvaa aikaa. Monikerroksinen verkkomalli perustuu yleisille objekteille, jotka ovat yhteisiä kaikille tietoliikenneverkoille. Tämä tekee mallista soveltuvan mielivaltaisille verkoille, välittämättä verkkokohtaisista ominaisuuksista tai verkon toteutuksessa käytetyistä teknologioista. Malli määrittelee tarkan terminologian ja käyttää kolmea käsitettä: verkon jakaminen tasoihin (plane separation), kerrosten muodostaminen (layering) ja osittaminen (partitioning). Nämä käsitteet kuvataan yksityiskohtaisesti tässä työssä. Monikerroksisen verkkomallin sisäinen rakenne ja toiminnallisuus ovat määritelty käyttäen Unified Modelling Language (UML) -notaatiota. Tämä työ esittelee mallin use case- , paketti- ja luokkakaaviot. Diplomityö esittelee myös tulokset, jotka on saatu vertailemalla monikerroksista verkkomallia muihin verkkomalleihin. Tulokset osoittavat, että monikerroksisella verkkomallilla on etuja muihin malleihin verrattuna.
Resumo:
This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.
Resumo:
SAMP8 is a strain of mice with accelerated senescence. These mice have recently been the focus of attention as they show several alterations that have also been described in Alzheimer"s disease (AD) patients. The number of dendritic spines, spine plasticity, and morphology are basic to memory formation. In AD, the density of dendritic spines is severely decreased. We studied memory alterations using the object recognition test. We measured levels of synaptophysin as a marker of neurotransmission and used Golgi staining to quantify and characterize the number and morphology of dendritic spines in SAMP8 mice and in SAMR1 as control animals. While there were no memory differences at 3 months of age, the memory of both 6- and 9-month-old SAMP8 mice was impaired in comparison with age-matched SAMR1 mice or young SAMP8 mice. In addition, synaptophysin levels were not altered in young SAMP8 animals, but SAMP8 aged 6 and 9 months had less synaptophysin than SAMR1 controls and also less than 3-month-old SAMP8 mice. Moreover, while spine density remained stable with age in SAMR1 mice, the number of spines started to decrease in SAMP8 animals at 6 months, only to get worse at 9 months. Our results show that from 6 months onwards SAMP8 mice show impaired memory. This age coincides with that at which the levels of synaptophysin and spine density decrease. Thus, we conclude that together with other studies that describe several alterations at similar ages, SAMP8 mice are a very suitable model for studying AD.
Resumo:
The fact that individuals learn can change the relationship between genotype and phenotype in the population, and thus affect the evolutionary response to selection. Here we ask how male ability to learn from female response affects the evolution of a novel male behavioral courtship trait under pre-existing female preference (sensory drive). We assume a courtship trait which has both a genetic and a learned component, and a two-level female response to males. With individual-based simulations we show that, under this scenario, learning generally increases the strength of selection on the genetic component of the courtship trait, at least when the population genetic mean is still low. As a consequence, learning not only accelerates the evolution of the courtship trait, but also enables it when the trait is costly, which in the absence of learning results in an adaptive valley. Furthermore, learning can enable the evolution of the novel trait in the face of gene flow mediated by immigration of males that show superior attractiveness to females based on another, non-heritable trait. However, rather than increasing monotonically with the speed of learning, the effect of learning on evolution is maximized at intermediate learning rates. This model shows that, at least under some scenarios, the ability to learn can drive the evolution of mating behaviors through a process equivalent to Waddington's genetic assimilation.
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
In this thesis programmatic, application-layer means for better energy-efficiency in the VoIP application domain are studied. The work presented concentrates on optimizations which are suitable for VoIP-implementations utilizing SIP and IEEE 802.11 technologies. Energy-saving optimizations can have an impact on perceived call quality, and thus energy-saving means are studied together with those factors affecting perceived call quality. In this thesis a general view on a topic is given. Based on theory, adaptive optimization schemes for dynamic controlling of application's operation are proposed. A runtime quality model, capable of being integrated into optimization schemes, is developed for VoIP call quality estimation. Based on proposed optimization schemes, some power consumption measurements are done to find out achievable advantages. Measurement results show that a reduction in power consumption is possible to achieve with the help of adaptive optimization schemes.
Resumo:
Forest inventories are used to estimate forest characteristics and the condition of forest for many different applications: operational tree logging for forest industry, forest health state estimation, carbon balance estimation, land-cover and land use analysis in order to avoid forest degradation etc. Recent inventory methods are strongly based on remote sensing data combined with field sample measurements, which are used to define estimates covering the whole area of interest. Remote sensing data from satellites, aerial photographs or aerial laser scannings are used, depending on the scale of inventory. To be applicable in operational use, forest inventory methods need to be easily adjusted to local conditions of the study area at hand. All the data handling and parameter tuning should be objective and automated as much as possible. The methods also need to be robust when applied to different forest types. Since there generally are no extensive direct physical models connecting the remote sensing data from different sources to the forest parameters that are estimated, mathematical estimation models are of "black-box" type, connecting the independent auxiliary data to dependent response data with linear or nonlinear arbitrary models. To avoid redundant complexity and over-fitting of the model, which is based on up to hundreds of possibly collinear variables extracted from the auxiliary data, variable selection is needed. To connect the auxiliary data to the inventory parameters that are estimated, field work must be performed. In larger study areas with dense forests, field work is expensive, and should therefore be minimized. To get cost-efficient inventories, field work could partly be replaced with information from formerly measured sites, databases. The work in this thesis is devoted to the development of automated, adaptive computation methods for aerial forest inventory. The mathematical model parameter definition steps are automated, and the cost-efficiency is improved by setting up a procedure that utilizes databases in the estimation of new area characteristics.
Resumo:
One of the main goals in current evolutionary biology research is to identify genes behind adaptive phenotypic variations. The advances in genomic technologies have made it possible to identify genetic loci behind these variations, also concerning non-model species. This thesis investigates the genetics of the behaviour and other adaptive traits of the nine-spined stickleback (Pungitius pungitius) through the application of different genetic approaches. Fennoscandian nine-spined stickleback populations express large phenotypical differences especially in behaviour, life –history traits and morphology. However the underlying genetic bases for these phenotypical differences have not been studied in detail. The results of the project will lay the foundation for further genetics studies and provide valuable information for our understanding of the genetics of the adaptive divergence of the nine-spined stickleback. A candidate gene approach was used to develop microsatellite markers situating close to candidate genes for behaviour in the nine-spined stickleback. Altogether 13 markers were developed and these markers were used in the subsequent studies with the anonymous random markers and physiologically important gene markers which are already currently available for nine-spined sticklebacks. It was shown that heterozygosity correlated with behaviour in one of the marine nine-spined stickleback populations but with contrasting effects: correlations with behaviour were negative when using physiological gene markers and positive with random markers. No correlation was found between behavioural markers and behaviour. From the physiological gene markers, a strong correlation was found between osmoregulation-related gene markers and behaviour. These results indicate that both local (physiological) and general (random) effects are important in the shaping of behaviour and that heterozygosity– behaviour correlations are population dependent. In this thesis a second linkage map for nine-spined sticklebacks was constructed. Compared to the earlier nine-spined stickleback linkage map, genomic rearrangements were observed between autosomal (LG7) and sex-determing (LG12) linkage groups. This newly constructed map was used in QTL mapping studies in order to locate genomic regions associated with pelvic structures, behaviour and body size/growth. One major QTL was found for pelvic structures and Pitx1 gene was related to these traits as was predicted from three-spined stickleback studies, but this was in contrast to earlier nine-spined stickleback study. The QTL studies also revealed that behaviour and body size/growth were genetically more complex by having more QTL than pelvic traits. However, in many cases, pelvic structure, body size/growth and behaviour were linked to similar map locations indicating possible pleiotropic effects of genes locating in these QTL regions. Many of the gene related markers resided in the QTL area. In the future, studying these possible candidate genes in depth might reveal the underlying mechanism behind the measured traits.
Resumo:
A model for predicting temperature evolution for automatic controling systems in manufacturing processes requiring the coiling of bars in the transfer table is presented. Although the method is of a general nature, the presentation in this work refers to the manufacturing of steel plates in hot rolling mills. The predicting strategy is based on a mathematical model of the evolution of temperature in a coiling and uncoiling bar and is presented in the form of a parabolic partial differential equation for a shape changing domain. The mathematical model is solved numerically by a space discretization via geometrically adaptive finite elements which accomodate the change in shape of the domain, using a computationally novel treatment of the resulting thermal contact problem due to coiling. Time is discretized according to a Crank-Nicolson scheme. Since the actual physical process takes less time than the time required by the process controlling computer to solve the full mathematical model, a special predictive device was developed, in the form of a set of least squares polynomials, based on the off-line numerical solution of the mathematical model.
Resumo:
The capabilities and thus, design complexity of VLSI-based embedded systems have increased tremendously in recent years, riding the wave of Moore’s law. The time-to-market requirements are also shrinking, imposing challenges to the designers, which in turn, seek to adopt new design methods to increase their productivity. As an answer to these new pressures, modern day systems have moved towards on-chip multiprocessing technologies. New architectures have emerged in on-chip multiprocessing in order to utilize the tremendous advances of fabrication technology. Platform-based design is a possible solution in addressing these challenges. The principle behind the approach is to separate the functionality of an application from the organization and communication architecture of hardware platform at several levels of abstraction. The existing design methodologies pertaining to platform-based design approach don’t provide full automation at every level of the design processes, and sometimes, the co-design of platform-based systems lead to sub-optimal systems. In addition, the design productivity gap in multiprocessor systems remain a key challenge due to existing design methodologies. This thesis addresses the aforementioned challenges and discusses the creation of a development framework for a platform-based system design, in the context of the SegBus platform - a distributed communication architecture. This research aims to provide automated procedures for platform design and application mapping. Structural verification support is also featured thus ensuring correct-by-design platforms. The solution is based on a model-based process. Both the platform and the application are modeled using the Unified Modeling Language. This thesis develops a Domain Specific Language to support platform modeling based on a corresponding UML profile. Object Constraint Language constraints are used to support structurally correct platform construction. An emulator is thus introduced to allow as much as possible accurate performance estimation of the solution, at high abstraction levels. VHDL code is automatically generated, in the form of “snippets” to be employed in the arbiter modules of the platform, as required by the application. The resulting framework is applied in building an actual design solution for an MP3 stereo audio decoder application.
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.