791 resultados para Adaptive neuro-fuzzy inference system


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A heuristic algorithm that employs fuzzy logic is proposed to the power system transmission expansion planning problem. The algorithm is based on the divide to conquer strategy, which is controlled by the fuzzy system. The algorithm provides high quality solutions with the use of fuzzy decision making, which is based on nondeterministic criteria to guide the search. The fuzzy system provides a self-adjusting mechanism that eliminates the manual adjustment of parameters to each system being solved. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SKAN: Skin Scanner - System for Skin Cancer Detection Using Adaptive Techniques - combines computer engineering concepts with areas like dermatology and oncology. Its objective is to discern images of skin cancer, specifically melanoma, from others that show only common spots or other types of skin diseases, using image recognition. This work makes use of the ABCDE visual rule, which is often used by dermatologists for melanoma identification, to define which characteristics are analyzed by the software. It then applies various algorithms and techniques, including an ellipse-fitting algorithm, to extract and measure these characteristics and decide whether the spot is a melanoma or not. The achieved results are presented with special focus on the adaptive decision-making and its effect on the diagnosis. Finally, other applications of the software and its algorithms are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunological systems have been an abundant inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to chall enging problems of modem computing. Simulation systems and mathematical modeling are also beginning use to answer more complex immunological questions as immune memory process and duration of vaccines, where the regulation mechanisms are not still known sufficiently (Lundegaard, Lund, Kesmir, Brunak, Nielsen, 2007). In this article we studied in machina a approach to simulate the process of antigenic mutation and its implications for the process of memory. Our results have suggested that the durability of the immune memory is affected by the process of antigenic mutation.and by populations of soluble antibodies in the blood. The results also strongly suggest that the decrease of the production of antibodies favors the global maintenance of immune memory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. Each agent has the knowledge about a different method for defining a strategy for playing in the market, the main agent chooses the best among all those, and provides it to the market player that requests, to be used in the market. This paper also presents a methodology to manage the efficiency/effectiveness balance of this method, to guarantee that the degradation of the simulator processing times takes the correct measure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is presenting the modules of the Adaptive Educational Hypermedia System PCMAT, responsible for the recommendation of learning objects. PCMAT is an online collaborative learning platform with a constructivist approach, which assesses the user’s knowledge and presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module and search and retrieval module choose the most adequate learning object, based on the user's characteristics and performance, and in this way contribute to the system’s adaptability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is presenting the recommendation module of the Mathematics Collaborative Learning Platform (PCMAT). PCMAT is an Adaptive Educational Hypermedia System (AEHS), with a constructivist approach, which presents contents and activities adapted to the characteristics and learning style of students of mathematics in basic schools. The recommendation module is responsible for choosing different learning resources for the platform, based on the user's characteristics and performance. Since the main purpose of an adaptive system is to provide the user with content and interface adaptation, the recommendation module is integral to PCMAT’s adaptation model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of an Adaptive System is to adequate its relation with the user (content presentation, navigation, interface, etc.) according to a predefined but updatable model of the user that reflects his objectives, preferences, knowledge and competences [Brusilovsky, 2001], [De Bra, 2004]. For Educational Adaptive Systems, the emphasis is placed on the student knowledge in the domain application and learning style, to allow him to reach the learning objectives proposed for his training [Chepegin, 2004]. In Educational AHS, the User Model (UM), or Student Model, has increased relevance: when the student reaches the objectives of the course, the system must be able to readapt, for example, to his knowledge [Brusilovsky, 2001]. Learning Styles are understood as something that intent to define models of how given person learns. Generally it is understood that each person has a Learning Style different and preferred with the objective of achieving better results. Some case studies have proposed that teachers should assess the learning styles of their students and adapt their classroom and methods to best fit each student's learning style [Kolb, 2005], [Martins, 2008]. The learning process must take into consideration the individual cognitive and emotional parts of the student. In summary each Student is unique so the Student personal progress must be monitored and teaching shoul not be not generalized and repetitive [Jonassen, 1991], [Martins, 2008]. The aim of this paper is to present an Educational Adaptive Hypermedia Tool based on Progressive Assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive (HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive (DA) method in terms of faster and improved tracking and parameter convergence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.