942 resultados para Acute Lymphoblastic Leukemia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo all-trans-retinoic acid (ATRA), a differentiation inducer, is capable of causing clinical remission in about 90% of patients with acute promyelocytic leukemia (APL). The molecular basis for the differentiation of APL cells after treatment with ATRA remains obscure and may involve genes other than the known retinoid nuclear transcription factors. We report here the ATRA-induced gene expression in a cell line (NB4) derived from a patient with APL. By differential display-PCR, we isolated and characterized a novel gene (RIG-E) whose expression is up-regulated by ATRA. The gene is 4.0 kb long, consisting of four exons and three introns, and is localized on human chromosome region 8q24. The deduced amino acid sequence predicts a cell surface protein containing 20 amino acids at the N-terminal end corresponding to a signal peptide and an extracellular sequence containing 111 amino acids. The RIG-E coded protein shares some homology with CD59 and with a number of growth factor receptors. It shares high sequence homology with the murine LY-6 multigene family, whose members are small cysteine-rich proteins differentially expressed in several hematopoietic cell lines and appear to function in signal transduction. It seems that so far RIG-E is the closest human homolog of the LY-6 family. Expression of RIG-E is not restricted to myeloid differentiation, because it is also present in thymocytes and in a number of other tissues at different levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human chromosome 21 AML1 gene is expressed predominantly in the hematopoietic system. In several leukemia-associated translocations AML1 is fused to other genes and transcription of the fused regions is mediated by upstream sequences that normally regulate the expression of AML1. The 5' genomic region of AML1 was cloned and sequenced. The two 5' untranslated regions (UTRs) previously identified in AML1 cDNAs were located in this region and the distance between them was established. The distal 5' UTR maps over 7 kb upstream of the proximal one. Using primer extension with mRNA, transcription start sites were identified at two distinct sites above these 5' uTRs. Sequence analysis revealed the absence of a TATA motif and the presence of Sp1, PU.1, Oct, CRE, Myb, Ets, and Ets-like binding sites in both upstream regions. Several initiator elements (Inr) that overlap the transcription start sites were also identified. These proximal and distal upstream regions and their deletion mutants were cloned in front of a luciferase reporter gene and used in transfection assays. We demonstrate that both upstream regions function as promoters in hematopoietic (Jurkat) and nonhematopoietic (HEK) cell lines. The activity of both promoters was orientation dependent and was enhanced, in a cell-type specific manner, by a heterologous enhancer sequence. These results indicate that additional control elements, either negative or positive, regulate the tissue-specific expression of AML1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with the M4Eo subtype of acute myeloid leukemia almost invariably are found to have an inversion of chromosome 16 in their leukemic cells, which results in a gene fusion between the transcription factor called core binding factor beta (CBFbeta) on 16q and a smooth muscle myosin heavy chain (SMMHC) gene on 16p. Subcellular localizations of the wild-type CBFbeta and the CBFbeta-SMMHC fusion protein were determined by immunofluorescence of NIH 3T3 cells that overexpress wild-type or fusion protein. Normal CBFbeta showed an unexpected perinuclear pattern consistent with primary localization in the Golgi complex. The CBFbeta-SMMHC fusion protein had a very different pattern. Nuclear staining included rod-like crystalline structures as long as 11 microm. The heterodimeric partner of CBFbeta, CBFalpha, formed part of this complex. Cytoplasmic staining included stress fibers that colocalized with actin, probably as a consequence of the myosin heavy chain component of the fusion protein. Deletion of different regions of the CBFbeta portion of the fusion protein showed that binding to CBFalpha was not required for nuclear translocation. However, deletion of parts of the SMMHC domain of the fusion protein involved in myosin-mediated filament formation resulted in proteins that did not form rod-like structures. These observations confirm previous indirect evidence that the CBFbeta-SMMHC fusion protein is capable of forming macromolecular nuclear aggregates and suggests possible models for the mechanism of leukemic transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased plasma fibrinogen levels are associated with shortened overall survival (OS) in some solid tumor types. In contrast, the prognostic significance of varying fibrinogen levels in acute myeloid leukemia (AML) at diagnosis is unknown. In this study, we assessed the prognostic significance of fibrinogen levels in AML patients. In a comprehensive retrospective single-center study, we determined the survival rates of 375 consecutive AML patients undergoing at least one cycle of intensive chemotherapy induction treatment. Patients were dichotomized between low (<4.1 g/L) and high fibrinogen levels (≥4.1 g/L) at diagnosis of AML before initiation of treatment. Subsequently, quartile ranges were applied to analyze the association of varying fibrinogen levels on survival. We observed that the rates of complete remission, early death, and admission to intensive care unit were equal in the low versus high fibrinogen group. However, OS was significantly better in the low fibrinogen group (27.3 vs 13.5 months; p = 0.0009) as well as progression-free survival (12.3 vs 7.8 months; p = 0.0076). This survival difference remained significant in the multivariate analysis (p = 0.003). Assessing quartiles of fibrinogen values, we further confirmed this observation. Our data suggest that high fibrinogen levels at diagnosis of AML are associated with unfavorable OS and progression-free survival but not with increased mortality during induction treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive therapy and autologous blood and marrow transplantation (ABMT) is an established post-remission treatment for acute myeloid leukemia (AML), although its exact role remains controversial and few data are available regarding longer-term outcomes. We examined the long-term outcome of patients with AML transplanted at a single center using uniform intensive therapy consisting of etoposide, melphalan and TBI. In all, 145 patients with AML underwent ABMT: 117 in first remission, 21 in second remission and seven beyond second remission. EFS and OS were significantly predicted by remission status (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • The cytotoxic effects of 6-mercaptopurine (6-MP) were found to be due to drug-derived intracellular metabolites (mainly 6-thioguanine nucleotides and to some extent 6-methylmercaptopurine nucleotides) rather than the drug itself. • Current empirical dosing methods for oral 6-MP result in highly variable drug and metabolite concentrations and hence variability in treatment outcome. WHAT THIS STUDY ADDS • The first population pharmacokinetic model has been developed for 6-MP active metabolites in paediatric patients with acute lymphoblastic leukaemia and the potential demographic and genetically controlled factors that could lead to interpatient pharmacokinetic variability among this population have been assessed. • The model shows a large reduction in interindividual variability of pharmacokinetic parameters when body surface area and thiopurine methyltransferase polymorphism are incorporated into the model as covariates. • The developed model offers a more rational dosing approach for 6-MP than the traditional empirical method (based on body surface area) through combining it with pharmacogenetically guided dosing based on thiopurine methyltransferase genotype. AIMS - To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. METHODS - Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m−2 day−1). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. RESULTS - The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P < 0.005) when incorporated as a covariate affecting the fractional metabolic transformation of 6-MP into 6-TGNs. The other genetic covariates tested were not statistically significant and therefore were not included in the final model. CONCLUSIONS - The developed pharmacokinetic model (if successful at external validation) would offer a more rational dosing approach for 6-MP than the traditional empirical method since it combines the current practice of using body surface area in 6-MP dosing with a pharmacogenetically guided dosing based on TPMT genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims - To develop a method that prospectively assesses adherence rates in paediatric patients with acute lymphoblastic leukaemia (ALL) who are receiving the oral thiopurine treatment 6-mercaptopurine (6-MP). Methods - A total of 19 paediatric patients with ALL who were receiving 6-MP therapy were enrolled in this study. A new objective tool (hierarchical cluster analysis of drug metabolite concentrations) was explored as a novel approach to assess non-adherence to oral thiopurines, in combination with other objective measures (the pattern of variability in 6-thioguanine nucleotide erythrocyte concentrations and 6-thiouric acid plasma levels) and the subjective measure of self-reported adherence questionnaire. Results - Parents of five ALL patients (26.3%) reported at least one aspect of non-adherence, with the majority (80%) citing “carelessness at times about taking medication” as the primary reason for non-adherence followed by “forgetting to take the medication” (60%). Of these patients, three (15.8%) were considered non-adherent to medication according to the self-reported adherence questionnaire (scored ≥ 2). Four ALL patients (21.1%) had metabolite profiles indicative of non-adherence (persistently low levels of metabolites and/or metabolite levels clustered variably with time). Out of these four patients, two (50%) admitted non-adherence to therapy. Overall, when both methods were combined, five patients (26.3%) were considered non-adherent to medication, with higher age representing a risk factor for non-adherence (P < 0.05). Conclusions - The present study explored various ways to assess adherence rates to thiopurine medication in ALL patients and highlighted the importance of combining both objective and subjective measures as a better way to assess adherence to oral thiopurines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cause for childhood acute lymphoblastic leukemia (ALL) remains unknown, but male gender is a risk factor, and among ethnicities, Hispanics have the highest risk. In this dissertation, we explored correlations among genetic polymorphisms, birth characteristics, and the risk of childhood ALL in a multi-ethnic sample in 161 cases and 231 controls recruited contemporaneously (2007-2012) in Houston, TX. We first examined three lymphoma risk markers, since lymphoma and ALL both stem from lymphoid cells. Of these, rs2395185 showed a risk association in non-Hispanic White males (OR=2.8, P=0.02; P interaction=0.03 for gender), but not in Hispanics. We verified previously known risk associations to validate the case-control sample. Mutations of HFE (C282Y, H63D) were genotyped to test whether iron-regulatory gene (IRG) variants known to elevate iron levels increase childhood ALL risk. Being positive for either polymorphism yielded only a modestly elevated OR in males, which increased to 2.96 (P=0.01) in the presence of a particular transferrin receptor (TFRC) genotype for rs3817672 (Pinteraction=0.04). SNP rs3817672 itself showed an ethnicity-specific association (P interaction=0.02 for ethnicity). We then examined additional IRG SNPs (rs422982, rs855791, rs733655), which showed risk associations in males (ORs=1.52 to 2.60). A polygenic model based on the number of polymorphic alleles in five IRG SNPs revealed a linear increase in risk (OR=2.00 per incremental change; P=0.002). Having three or more alleles compared with none was associated with increased risk in males (OR=4.12; P=0.004). Significant risk associations with childhood ALL was found with birth length (OR=1.18 per inch, P=0.04), high birth weight (>4,000g) (OR=1.93, P=0.01), and with gestational age (OR=1.10 per week, P=0.04). We observed a negative correlation between HFE SNP rs9366637 and gestational age (P=0.005), again, stronger in males ( P=0.001) and interacting with TFRC (P interaction=0.05). Our results showed that (i) ALL risk markers do not show universal associations across ethnicities or between genders, (ii) IRG SNPs modify ALL risk presumably by their effects on iron levels, (iii) a negative correlation between an HFE SNP and gestational age exists, which implicates an iron-related mechanism. The results suggest that currently unregulated supplemental iron intake may have implications on childhood ALL development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Acute myeloid leukemia (AML) is a heterogeneous clonal disorder often associated with dismal overall survival. The clinical diversity of AML is reflected in the range of recurrent somatic mutations in several genes, many of which have a prognostic and therapeutic value. Targeted next-generation sequencing (NGS) of these genes has the potential for translation into clinical practice. In order to assess this potential, an inter-laboratory evaluation of a commercially available AML gene panel across three diagnostic centres in the UK and Ireland was performed.

METHODS: DNA from six AML patient samples was distributed to each centre and processed using a standardised workflow, including a common sequencing platform, sequencing chips and bioinformatics pipeline. A duplicate sample in each centre was run to assess inter- and intra-laboratory performance.

RESULTS: An average sample read depth of 2725X (range 629-5600) was achieved using six samples per chip, with some variability observed in the depth of coverage generated for individual samples and between centres. A total of 16 somatic mutations were detected in the six AML samples, with a mean of 2.7 mutations per sample (range 1-4) representing nine genes on the panel. 15/16 mutations were identified by all three centres. Allelic frequencies of the mutations ranged from 5.6 to 53.3 % (median 44.4 %), with a high level of concordance of these frequencies between centres, for mutations detected.

CONCLUSION: In this inter-laboratory comparison, a high concordance, reproducibility and robustness was demonstrated using a commercially available NGS AML gene panel and platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present article, two new types of PML/RARA junctions are described. Both were identified in diagnostic samples from two t(15;17)(q22;q21)-positive acute promyelocytic leukemia (APL) patients who failed to achieve complete remission. By using different sets of primers, reverse transcriptase polymerase chain reaction (RT-PCR) of PML/RARA junctions showed atypical larger bands compared with those generated from the three classical PML breakpoints already described. Sequence analysis of the fusion region of the amplified cDNAs allowed us to determine the specificity of these fragments in both patients. This analysis showed two new hybrid transcripts that were 53 and 306 base pairs (bp) longer than that expressed by the NB4 cell line (PML breakpoint within intron 6), and are the result of the direct joining of RARA exon 3 with PML exon 7a (patient 2) or the 5' portion of PML exon 7b (patient 1), respectively. In patient 1, RT-PCR analysis of the reciprocal RARA/PML junction showed a smaller transcript than that expected in bcr1 cases, while in patient 2 no amplified fragment was obtained. Cytogenetic analysis and/or fluorescence in situ hybridization (FISH) showed that both patients had the t(15;17) translocation. The clinical and hematological profiles expressed by the two patients carrying these unexpected types of PML/RARA rearrangement did not differ significantly from that commonly seen in other APLs with the exception of the poor outcome. Genes Chromosomes Cancer 27:35-43, 2000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ntestinal aspergillosis is an infection with a very high death rate especially in leukemic patients. Here we describe a case of a 46 years old woman with acute myeloid leukemia (LAM M5) who developed intestinal primary aspergillosis. This patient was diagnosed with LAM M5 through bone marrow aspiration and bone biopsy in March 2004. Symptoms of the disease were slight persistent fever, weight loss, asthenia, anemia, thrombocytopenia,and leukocytosis with high number of blasts in peripheral blood. After induction chemotherapy with ICE (Ifosfamide, Carboplatin, Etoposide), she developed neutropenia and high fever without apparent infective foci. She was treated with empiric antibiotic therapy, nevertheless she developed an intense diarrhea and ileo-cecal distention. Diagnostic exams didn’t show signs of a focal lesion. Despite the change in antibiotic treatment and the transfusions of granulocytes and blood cells, the patient developed extremely critical conditions with persistence of neutropenia and abdominal distention. A surgical treatment was decided at the time. We treated the patient with a two steps surgical procedure. The first step was a right abdominal ileostomy followed by improvement of general conditions and then the second step a right colectomy. The histological morphology confirmed necrotizing colitis with Aspergillus ife. At that time , treatment with voriconazole was started. The general conditions of the patient improved rapidly and we were able to treat the patient with other medical anti-leukemic therapies. The patient is now cured and in healthy state. We obtained a good clinical result as only in other few cases described in literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. ^ Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5 ) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. ^ The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.^