411 resultados para Actuation
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
Micromirror arrays are a very strong candidate for future energy saving applications. Within this work, the fabrication process for these micromirror arrays has been optimized and some steps for the large area fabrication of micromirror modules were performed. At first the surface roughness of the insulation layer of silicon dioxide (SiO2) was investigated. This SiO2 thin layer was deposited on three different type of substrates i.e. silicon, glass and Polyethylene Naphthalate (PEN) substrates. The deposition techniques which has been used are Plasma Enhanced Chemical Vapor Deposition (PECVD), Physical Vapor Deposition (PVD) and Ion Beam Sputter Deposition (IBSD). The thickness of the SiO2 thin layer was kept constant at 150nm for each deposition process. The surface roughness was measured by Stylus Profilometry and Atomic Force Microscopy (AFM). It was found that the layer which was deposited by IBSD has got the minimum surface roughness value and the layer which was deposited by PECVD process has the highest surface roughness value. During the same investigation, the substrate temperature of PECVD was varied from 80° C to 300° C with the step size of 40° C and it was found that the surface roughness keeps on increasing as the substrate holder temperature increases in the PECVD process. A new insulation layer system was proposed to minimize the dielectric breakdown effect in insulation layer for micromirror arrays. The conventional bilayer system was replaced by five layer system but the total thickness of insulation layer remains the same. It was found that during the actuation of micromirror arrays structure, the dielectric breakdown effect was reduced considerably as compared to the bilayer system. In the second step the fabrication process of the micromirror arrays was successfully adapted and transferred from glass substrates to the flexible PEN substrates by optimizing the conventional process recipe. In the last section, a large module of micromirror arrays was fabricated by electrically interconnecting four 10cm×10cm micromirror modules on a glass pane having dimensions of 21cm×21cm.
Resumo:
Many approaches to force control have assumed the ability to command torques accurately. Concurrently, much research has been devoted to developing accurate torque actuation schemes. Often, torque sensors have been utilized to close a feedback loop around output torque. In this paper, the torque control of a brushless motor is investigated through: the design, construction, and utilization of a joint torque sensor for feedback control; and the development and implementation of techniques for phase current based feedforeward torque control. It is concluded that simply closing a torque loop is no longer necessarily the best alternative since reasonably accurate current based torque control is achievable.
Resumo:
This report presents a design of a new type of robot end-effector with inherent mechanical grasping capabilities. Concentrating on designing an end-effector to grasp a simple class of objects, cylindrical, allowed a design with only one degree of actuation. The key features of this design are high bandwidth response to forces, passive grasping capabilities, ease of control, and ability to wrap around objects with simple geometries providing form closure. A prototype of this mechanism was built to evaluate these features.
Resumo:
The goal of this research is to develop the prototype of a tactile sensing platform for anthropomorphic manipulation research. We investigate this problem through the fabrication and simple control of a planar 2-DOF robotic finger inspired by anatomic consistency, self-containment, and adaptability. The robot is equipped with a tactile sensor array based on optical transducer technology whereby localized changes in light intensity within an illuminated foam substrate correspond to the distribution and magnitude of forces applied to the sensor surface plane. The integration of tactile perception is a key component in realizing robotic systems which organically interact with the world. Such natural behavior is characterized by compliant performance that can initiate internal, and respond to external, force application in a dynamic environment. However, most of the current manipulators that support some form of haptic feedback either solely derive proprioceptive sensation or only limit tactile sensors to the mechanical fingertips. These constraints are due to the technological challenges involved in high resolution, multi-point tactile perception. In this work, however, we take the opposite approach, emphasizing the role of full-finger tactile feedback in the refinement of manual capabilities. To this end, we propose and implement a control framework for sensorimotor coordination analogous to infant-level grasping and fixturing reflexes. This thesis details the mechanisms used to achieve these sensory, actuation, and control objectives, along with the design philosophies and biological influences behind them. The results of behavioral experiments with a simple tactilely-modulated control scheme are also described. The hope is to integrate the modular finger into an %engineered analog of the human hand with a complete haptic system.
Resumo:
An adaptive tuned vibration absorber (ATVA) with a smart variable stiffness element is capable of retuning itself in response to a time-varying excitation frequency., enabling effective vibration control over a range of frequencies. This paper discusses novel methods of achieving variable stiffness in an ATVA by changing shape, as inspired by biological paradigms. It is shown that considerable variation in the tuned frequency can be achieved by actuating a shape change, provided that this is within the limits of the actuator. A feasible design for such an ATVA is one in which the device offers low resistance to the required shape change actuation while not being restricted to low values of the effective stiffness of the vibration absorber. Three such original designs are identified: (i) A pinned-pinned arch beam with fixed profile of slight curvature and variable preload through an adjustable natural curvature; (ii) a vibration absorber with a stiffness element formed from parallel curved beams of adjustable curvature vibrating longitudinally; (iii) a vibration absorber with a variable geometry linkage as stiffness element. The experimental results from demonstrators based on two of these designs show good correlation with the theory.
Resumo:
The realisation that much of conventional. modern architecture is not sustainable over the long term is not new. Typical approaches are aimed at using energy and materials more efficiently. However, by clearly understanding the natural processes and their interactions with human needs in view, designers can create buildings that are delightful. functional productive and regenerative by design. The paper aims to review the biomimetics literature that is relevant to building materials and design. Biomimetics is the abstraction of good design from Nature, an enabling interdisciplinary science. particularly interested in emerging properties of materials and structures as a result of their hierarchical organisation. Biomimetics provides ideas relevant to: graded functionality of materials (nano-scale), adaptive response (nano-, micro-. and macro-scales): integrated intelligence (sensing and actuation at all scales), architecture and additional functionality. There are many examples in biology where emergent response of plants and animals to temperature, humidity and other changes in their physical environments is based on relatively simple physical principles. However, the implementation of design solutions which exploit these principles is where inspiration for man-made structures should be. We analyse specific examples of sustainability from Nature and the benefits or value that these solutions have brought to different creatures. By doing this, we appreciate how the natural world fits into the world of sustainable buildings and how as building engineers we can value its true application in delivering sustainable building.
Resumo:
This paper develops a novel method of actuation for robotic hands. The solution employs Bowden cable routed to each joint as the means by which the finger is actuated. The use of Bowden cable is shown to be feasible for this purpose, even with the changing frictional forces associated with it's use. This method greatly simplifies the control of the hand by removing the coupling between joints, and allows for direct and accurate translation between the joints and the motors driving the Bowden wires. The design also allows for two degrees of freedom (with the same centre of rotation) to be realised in the largest knuckle of each finger, meaning biological finger kinematics are more accurately emulated.
Resumo:
This paper describes a novel method of actuation for robotic hands. The solution employs a Bowden cable routed to each joint. The use of a Bowden cable is shown to be feasible for this purpose, ever, with the changing frictional forces associated with it. This method greatly simplifies the control of the hand by removing the coupling between joints, and provides for direct and accurate translation between the joints and the servo motors driving the cables. The design also allows for two degrees of freedom with the same centre of rotation to be realized in the largest knuckle of each finger; thus biological finger kinematics are more closely emulated.
Resumo:
A new wire mechanism called Redundant Drive Wire Mechanism (RDWM) is proposed. The purpose of this paper is to build up the theory of a RDWM with fast motion and fine motion. First, the basic concepts of the proposed mechanism is presented. Second, the vector closure condition for the proposed mechanism is developed. Next, we present the basic equations, propose the basic structure of RDWM with the Internal DOF module, Double Actuation Modules and Precision Modules together with the properties of the mechanism. Finally, we conduct the simulation to show the validity of the RDWM.
Resumo:
A low cost, compact embedded design approach for actuating soft robots is presented. The complete fabrication procedure and mode of operation was demonstrated, and the performance of the complete system was also demonstrated by building a microcontroller based hardware system which was used to actuate a soft robot for bending motion. The actuation system including the electronic circuit board and actuation components was embedded in a 3D-printed casing to ensure a compact approach for actuating soft robots. Results show the viability of the system in actuating and controlling siliconebased soft robots to achieve bending motions. Qualitative measurements of uniaxial tensile test, bending distance and pressure were obtained. This electronic design is easy to reproduce and integrate into any specified soft robotic device requiring pneumatic actuation.
Resumo:
The loss of motor function at the elbow joint can result as a consequence of stroke. Stroke is a clinical illness resulting in long lasting neurological deficits often affecting somatosensory and motor cortices. More than half of those that recover from a stroke survive with disability in their upper arm and need rehabilitation therapy to help in regaining functions of daily living. In this paper, we demonstrated a prototype of a low-cost, ultra-light and wearable soft robotic assistive device that could aid administration of elbow motion therapies to stroke patients. In order to assist the rotation of the elbow joint, the soft modules which consist of soft wedge-like cellular units was inflated by air to produce torque at the elbow joint. Highly compliant rotation can be naturally realised by the elastic property of soft silicone and pneumatic control of air. Based on the direct visual-actuation control, a higher control loop utilised visual processing to apply positional control, the lower control loop was implemented by an electronic circuit to achieve the desired pressure of the soft modules by Pulse Width Modulation. To examine the functionality of the proposed soft modular system, we used an anatomical model of the upper limb and performed the experiments with healthy participants.
Resumo:
Polymeric electroactive blends formed by electropolymerized aniline inside a non-conductive polyacrylamide porous matrix were already shown as suitable materials for the electrocontrolled release of model compounds like safranin. In this paper the intermolecular interactions between the two components of the blend are put in evidence by Raman spectroscopy measurements. Also, in situ optical microscopy was used to follow changes occurring in the polyaniline/polyacrylamide blend during pyrocathecol violet release tests. These two sets of experiments show the possibility of controlling electrochemically the release of both, safranin (a cation) and pyrocathecol violet (an anion) and allow to infer a release mechanism based on the electromechanical properties of the blends explaining the dependence of the release kinetics on the applied potential. Tetracycline release curves for different potentials and pHs are shown and the obtained profiles are in agreement with those expected for a device acting as an electrochemically driven pump due to the artificial muscle properties of the conducting phase of the blends. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Com a globalização do mercado e o alto nível de competitividade no setor educacional, as organizações, para manterem-se, devem ser ágeis e competentes. Neste contexto, a gestão eficiente dos recursos e a obtenção de informações precisas que apóiem a tomada de decisão dependerão, em grande parte, de um sistema de informações de custos. Este sistema deverá ter como base um método de custeio que forneça informações, a fim de atender as distintas necessidades dos gestores dos diversos níveis hierárquico e das diversas áreas de atuação. O trabalho consiste no estudo de uma metodologia de custeio aplicável a uma Instituição de Ensino Superior – IES privada, a qual atenda as três perspectivas que são fornecer informações para embasar a composição dos preços, para apoiar o processo decisório e para o planejamento e controle de gastos. Para tanto, partiu-se da pesquisa bibliográfica no levantamento do estado da arte relacionada ao tema. Com o estudo de caso buscou-se a identificação das necessidades de informações de custos, demandadas pelos gestores da IES, por meio de pesquisa qualitativa. A partir dessa identificação, as necessidades foram cruzadas com os métodos de custeio existentes, o que permitiu a identificação do método mais adequado a IES. Nesta etapa foi possível o cruzamento entre a teoria e a prática, onde foram comparados o método proposto em relação ao atual método adotado pela IES o que possibilitou a identificação das deficiências do modelo atual e suas causas. A partir disto, propõe-se uma sistemática mais adequada para apoiar a tomada de decisão, com o intuito de melhoria do desempenho da instituição. Os resultados obtidos demonstram o cumprimento do objetivo onde, considerando as necessidades de informações de custos dos gestores, o método de custeio por atividades é o mais adequado para o suporte a gestão da IES.
Resumo:
Os Bancos Centrais têm, como função principal, zelar pela moeda, de modo a assegurar a estabilidade financeira de seus países. A partir de tal premissa, buscaremos demonstrar que o Banco Central do Brasil necessita de autonomia operacional, a ser regulamentada em lei, a fim de cumprir com sua missão, que é de natureza essencialmente técnica. Em que pese o fato de questão de se implementar, no Brasil, um Banco Central dotado de autonomia não ser consensual, buscaremos demonstrar as vantagens deste modelo, como fator de obtenção de estabilidade monetária. No Brasil, o Banco Central (BACEN), além de arcar com uma enorme gama de atribuições, encontra-se sujeito a pressões governamentais, em face de projetos de curto prazo, não necessariamente compatíveis com a tarefa de estabilização monetária, que pode requerer uma atuação de longo prazo. A autonomia desejada para o BACEN não significa que ele venha a se tomar independente, pelo contrário, uma vez que ele terá que assumir a responsabilidade de atingir metas pré-determinadas pelo Governo, obrigando-se a prestar contas de sua atuação à sociedade, de modo transparente. Para tanto, é preciso que ele seja dotado de autonomia administrativa, orçamentária e operacional, dentro de limites estabelecidos por lei. Ao destacarmos a autonomia do BACEN, trazemos a tona um fator pertinente à questão que é inflação. Trata-se de um processo que corrói a economia, e, quando se toma crônica, 111 como vinha ocorrendo no Brasil até os anos 90, leva à instabilidade e dificulta um planejamento de longo prazo. A necessidade de se controlar a inflação, em muitos países, levou-os a adotar uma política monetária com metas inflacionárias - Inflatíon Targeting. Os países que adotaram o regime de metas inflacionárias conferiram autonomia aos seus Bancos Centrais, pois tanto mais autonomia, tanto mais credibilidade. Desta forma, países como o Chile, a Nova Zelândia, a Alemanha e os demais países que compõem a União Europeia lograram controlar a inflação. Para que o BACEN cumpra com o que lhe compete, exercendo eficientemente o seu papel, é curial, portanto, que seja dotado de autonomia orçamentária, administrativa e operacional, devendo ser regulamentado o art. 192 da Constituição Federal, através de Lei Complementar. Uma vez assegurada legalmente a autonomia de que o Banco Central do Brasil necessita, ter-se-á um meio valioso de controle da inflação, assegurando a estabilidade da moeda e permitindo que o desenvolvimento seja implementado no prazo adequado, permitindo um planejamento estratégico de longo prazo para o país.