955 resultados para Activated unimolecular reactions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthracnose and crown rot, caused by Colletotrichum trifolii, are serious diseases of lucerne (Medicago saliva L.) in humid regions of the world. A race survey was conducted by inoculating individual lucerne clones (genotypes) with C. trifolii isolates collected from a range of Medicago hosts, locations, and years in south-eastern Queensland. This survey revealed for the first time in Australia the presence of race 2 (virulence on anthracnose resistance gene An I) and the first world report of race 4 (virulence on An(2)). A collection of North American race I and race 2 C. trifolii isolates, when inoculated onto the Australian differential clones, gave responses that were in agreement with their North American reactions. A RAPD analysis was conducted on 9 Australian C. trifolii isolates including races 1, 2, and 4; two C. destructivum and one C. gloeosporioides isolate were included as known outliers. For the C. trifolii isolates, 94.6% similarity was found regardless of host origin or race, compared with 2.2% similarity between this group and the C. gloeosporioides and C. destructivum isolates, confirming that the new races belong to C. trifolii. Currently, it is hypothesised that only plants carrying genes An, and An2 are resistant to the 3 races. Of 22 cultivars screened against the 3 races, only UQL-1, Hallmark, and Pioneer 54Q53 had >30% of plants resistant to the 3 races in separate screenings. The research highlights the need to find new sources of resistance to C. trifolii in lucerne.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In the presence of dNTPs, intact HIV-1 virions are capable of reverse transcribing at least part of their genome, a process known as natural endogenous reverse transcription (NERT). PCR analysis of virion DNA produced by NERT revealed that the first strand transfer reaction (1stST) was inefficient in intact virions, with minus strand (-) strong stop DNA (ssDNA) copy numbers up to 200 times higher than post-1stST products measured using primers in U3 and U5. This was in marked contrast to the efficiency of 1stST observed in single-round cell infection assays, in which (-) ssDNA and U3-U5 copy numbers were indistinguishable. Objectives: To investigate the reasons for the discrepancy in first strand transfer efficiency between intact cell-free virus and the infection process. Study design: Alterations of both NERT reactions and the conditions of cell infection were used to test whether uncoating and/or entry play a role in the discrepancy in first strand transfer efficiency. Results and Conclusions: The difference in 1stST efficiency could not be attributed simply to viral uncoating, since addition of very low concentrations of detergent to NERT reactions removed the viral envelope without disrupting the reverse transcription complex, and these conditions resulted in no improvement in 1stST efficiency. Virus pseudotyped with surface glycoproteins from either vesicular stomatitis virus or amphotrophic murine leukaemia virus also showed low levels of 1stST in low detergent NERT assays and equivalent levels of (-) ssDNA and 1stST in single-round infections of cells, demonstrating that the gp120-mediated infection process did not select for virions capable of carrying out 1stST. These data indicate that a post-entry event or factor may be involved in efficient HIV-1 reverse transcription in vivo. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the question of which is better: the batch or the continuous activated sludge processes? It is an important question because dissension still exists in the wastewater industry as to the relative merits of each of the processes. A review of perceived differences in the processes from the point of view of two related disciplines, process engineering and biotechnology, is presented together with the results of previous comparative studies. These reviews highlight possible areas where more understanding is required. This is provided in the paper by application of the flexibility index to two case studies. The flexibility index is a useful process design tool that measures the ability of the process to cope with long term changes in operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Future directions in this field are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comprehensive study of sludge floc characteristics and their impact on compressibility and settleability of activated sludge in full scale wastewater treatment processes. The sludge flocs were characterised by morphological (floc size distribution, fractal dimension, filament index), physical (flocculating ability, viscosity, hydrophobicity and surface charge) and chemical (polymeric constituents and metal content) parameters. Compressibility and settleability were defined in terms of the sludge volume index (SVI) and zone settling velocity (ZSV). The floc morphological and physical properties had important influence on the sludge compressibility and settleability. Sludges containing large flocs and high quantities of filaments, corresponding to lower values of fractal dimension (D-f), demonstrated poor compressibility and settleability. Sludge flocs with high flocculating ability had lower SVI and higher ZSV, whereas high values of hydrophobicity, negative surface charge and viscosity of the sludge flocs correlated to high SVI and low ZSV. The quantity of the polymeric compounds protein. humic substances and carbohydrate in the sludge and the extracted extracellular polymeric substances (EPS) had significant positive correlations with SVI. The ZSV was quantitatively independent of the polymeric constituents. High concentrations of the extracted EPS were related to poor compressibility and settleability. The cationic ions Ca, Mg, Al and Fe in the sludge improved significantly the sludge compressibility and settleability. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the influence of the chemical constituents of activated sludge and extracted extracellular polymeric substances (EPS) on the surface properties, hydrophobicity, surface charge (SC) and flocculating ability (FA) of activated sludge floes. Activated sludge samples from 7 different full-scale wastewater treatment plants were examined. Protein and humic substances were found to be the dominant polymeric compounds in the activated sludges and the extracted EPS, and they significantly affected the FA and surface properties, hydrophobicity and SC, of the sludge floes. The polymeric compounds proteins, humic substances and carbohydrates in the sludge floes and the extracted EPS contributed to the negative SC, but correlated negatively to the hydrophobicity of sludge floes. The quantity of protein and carbohydrate within the sludge and the extracted EPS was correlated positively to the FA of the sludge floes, while increased amounts of humic substances resulted in lower FA. In contrast, increased amounts of total extracted EPS had a negative correlation to FA. The results reveal that the quality and quantity of the polymeric compounds within the sludge floes is more informative, with respect to understanding the mechanisms involved in flocculation, than if only the extracted EPS are considered. This is an important finding as it indicates that extracting EPS may be insufficient to characterise the EPS. This is due to the low extraction efficiency and difficulties involved in the separation of EPS from other organic compounds. Correlations were observed between the surface properties and FA of the sludge floes., This confirms that the surface properties of the, sludge flocs play an important role in the bioflocculation process but that also other interactions like polymer entanglement are important. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated sludge samples from seven full-scale plants were investigated in order to determine the relationship between floc structure and floc stability. Floc stability was determined by shear sensitivity and floc strength. Floc structure was considered in terms of two size scales, the micro- and macrostructure. The microstructure refers to the organization of the floc components, such as the individual microorganisms. The macrostructure refers to the overall floc. The floc macrostructure was characterized by filament index, sludge volume index, size, and fractal dimension. It had a significant impact on floc stability. Large and open floes with low fractal dimensions containing large number of filaments were more shear sensitive and had lower floc strength compared to small and dense floes. Fluorescent in situ hybridization analysis indicated that the organization of the bacterial cells might also have an effect on the floc stability. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated sludge floes are a flocculated mass of microorganisms, extracellular polymeric substances (EPS) and adsorbed organic and inorganic material. The structure of the floes is very heterogeneous and floes with very different properties and morphologies may occur, depending on the conditions in the activated sludge treatment plant and wastewater composition. Present thinking suggests that cations, such as calcium, create cationic bridges with EPS excreted by the bacteria and thereby hold the various floe constituents together. However, due to the complex and heterogeneous nature of activated sludge, the mechanisms have neither been thoroughly investigated nor successfully quantified. A better understanding and description of the biological flocculation process is necessary in order to establish more efficient operational strategies. The main aim of this study was to get a comprehensive and unique insight into the floe properties of activated sludge and to assess the relative impact of chemical and physical parameters. A variety of sludges from full scale treatment plants with different settling properties were characterised. The interrelationships between floe parameters such as composition of EPS, surface properties and floe structure, and their effect on the flocculation and separation properties were assessed. The results indicate that the EPS, both in terms of quantity and quality, are very important for the floe properties of the activated sludge. However, presence of filaments may alter the physical properties of the floes considerably. The EPS showed positive correlations to sludge volume index (SVI) if only sludges with low or moderate numbers of filaments were included. The surface properties were more affected by the composition of the EPS than by the number of filaments. The EPS showed positive correlation to negative surface charge and a negative correlation to relative hydrophobicity and flocculation ability. The negative correlation between flocculation ability and amount of EPS was surprising. The shear sensitivity, measured as degree of erosion of floes when subjected to shear, was more affected by floe size and number of filaments than amount of EPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional methods to determine surface diffusion of adsorbed molecules are proven to be inadequate for strongly adsorbing vapors on activated carbon. Knudsen diffusion permeability (B-k) for strongly adsorbing vapors cannot be directly estimated from that of inert gases such as helium. In this paper three models are considered to elucidate the mechanism of surface diffusion in activated carbon. The transport mechanism in all three models is a combination of Knudsen diffusion, viscous flow and surface diffusion. The collision reflection factor f (which is the fraction of molecules undergoing collision to the solid surface over reflection from the surface) of the Knudsen diffusivity is assumed to be a function of loading. It was found to be 1.79 in the limit of zero loading, and decreases as loading increases. The surface diffusion permeability increases sharply at very low pressures and then starts to decrease after it has reached a maximum (B(mum)s) at a threshold pressure. The initial rapid increase in the total permeability is mainly attributed to surface diffusion. Interestingly the B(mum)s for all adsorbates appear at the same volumetric adsorbed phase concentration, suggesting that the volume of adsorbed molecules may play an important role in the surface diffusion mechanism in activated carbon. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of chain reactions of octanedithiol with styrene, thermally initiated with TX29B50 (a 50:50 wt% solution of TX29 diperoxy initiator in a phthalate plasticizer), have been studied over a range of initiator concentrations, a range of mixture formulations and a range of temperatures. This system has been investigated as a model system for the reactions of polyfunctional thiols with divinyl benzene. The reactions have been shown to follow first-order kinetics for both the thiol and the ene species and to be characterized by a dependence on the initiator concentration to the power of one half. The kinetic rate parameters have been shown to adhere to Arrhenius behaviour. A kinetic model for the chain reactions for this system has been proposed. (C) 2003 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated mathematical model for the kinetics of multicomponent adsorption on microporous carbon was developed. Transport in this bidisperse solid is represented by balance equations in the macropore and micropore phases, in which gas-phase diffusion dominates the mass transfer in the macropores, with the phenomenological diffusivities represented by the generalized Maxwell-Stefan (GMS) formulation. Viscous flow also contributes to the macropore fluxes and is included in the MS expressions. Diffusion of the adsorbed phase controls the mass transfer in the micro ore phase, p which is also described in a similar way by the MS method. The adsorption isotherms are represented by a new heterogeneous modified vacancy solution theory formulation of adsorption, which has proved to be a robust method for adsorption on activated carbons. The model is applied to the coadsorption and codesorption of C2H6 and C3H8 on Ajax and Norit carbon, as well as the displacement on Ajax carbon. The effect of the viscous flow in the macropore phase is not significant for the cases studied. The model accurately predicts the overshoot behavior and rollup of C2H6 during coadsorption. The prediction for the heavier compound C3H8 is always satisfactory, though at higher C3H8 mole fraction, the overshoot extent of C2H6 is overpredicted, possibly due to neglect of heat effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors extend their earlier work on the stability of a reacting binary polymer blend with respect to demixing [D. J. Read, Macromolecules 31, 899 (1998); P. I. C. Teixeira , Macromolecules 33, 387 (2000)] to the case where one of the polymers is rod-like and may order nematically. As before, the authors combine the random phase approximation for the free energy with a Markov chain model for the chemistry to obtain the spinodal as a function of the relevant degrees of reaction. These are then calculated by assuming a simple second-order chemical kinetics. Results are presented, for linear systems, which illustrate the effects of varying the proportion of coils and rods, their relative sizes, and the strength of the nematic interaction between the rods. (c) 2007 American Institute of Physics.