965 resultados para Activated Human Platelets
Resumo:
Trypsinogen (TRY), the precursor to the serine protease trypsin, is found in the pancreas and mediates digestive proteolysis in the small intestine. Differential display of cDNAs expressed by human colorectal tumor tissues compared with adjacent normal colonic mucosa identified an isoform of TRY (TRY2) up-regulated in colorectal cancers. Northern blot analysis of RNA isolated from a series of 28 malignant colon tumors and corresponding normal mucosa showed that TRY transcripts were up-regulated 2- to 33-fold in 29% of tumors. Further, TRY mRNA was expressed in 6 colorectal cancer cell lines, with highest levels detected in the metastatic tumor lines SW620 and HT29. Immunostaining for TRY protein expression showed intense immunoreactivity in the supranuclear cytoplasm of colon tumors in 16% of tissue specimens. To evaluate the relative contributions of 2 isoforms of TRY, TRY1 and TRY2, to total TRY mRNA expression, a semiquantitative multiplex RT-PCR assay was developed. TRY2 mRNA was detected in all 6 colorectal tumor cell lines, whereas TRY1 mRNA was expressed only in the metastatic tumor lines, showing that the high levels of TRY expression in the metastatic tumor lines are likely due to up-regulation of TRY1. Evaluation of TRY1 and TRY2 mRNA expression by multiplex RT-PCR in a series of 20 colon tumor tissues representative of the range of tumor progression showed that TRY2 mRNA was expressed much more commonly than TRY1 mRNA in normal mucosa (26% vs. 6%) as well as in primary tumor tissues (65% vs. 15%). These data demonstrate that TRY2 is the dominant TRY in colon tissue and suggest that up-regulation of TRY1 expression in colon tumors may be associated with a metastatic phenotype. (C) 2001 Wiley-Liss, Inc.
Resumo:
Human V alpha 24 natural killer T (V alpha 24NKT) cells are activated by -glycosylceramide-pulsed dendritic cells (DCs) in a CDld-dependent and T-cell receptor-mediated manner. There are two major subpopulations of V alpha 24NKT cells, CD4(-) CD8(-) V alpha 24NKT and CD4(+) V alpha 24NKT cells. We have recently shown that activated CD4(-) CD8 V alpha 24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of V alpha 24NKT cells is currently limited. We aimed to investigate whether CD4(+) V alpha 24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4(+) V alpha 24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4(+) V alpha 24NKT cells, but not with resting CD4(+) V alpha 24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb, Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40-CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Va24NKT cells. The apoptosis of DCs from normal donors. triggered by the CD40-CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4(+) V alpha 24NKT cells by virtue of apoptosis of DCs.
Resumo:
We investigated roles of different forms of cytochrome P450 (P450 or CYP) in the metabolic activation of heterocyclic amines (HCAs) and other procarcinogens to genotoxic metabolite(s) in the newly developed umu tester strains Salmonella typhimurium (S. typhimurium) OY1002/1A1, OY1002/1A2, OY1002/1B1, OY1002/2C9, OY1002/2D6, OY1002/2E1 and OY 1002/3A4. which express respective human P450 enzymes and NADPH-cytochrome P350 reductase (reductase) and bacterial O-acetyltransferase (O-AT). These strains were established by introducing two plasmids into S. typhimurium TA 1535, one carrying both P450 and the reductase cDNA in a bicistronic construct under control of an IPTG-inducible double me promoter and the other, pOA 102, carrying O-AT and umuClacZ fusion genes. Expression levels of CYP were found to range between 35 to 550 nmol/l cell culture in the strains tested. O-AT activities in different strains ranged from 52 to 135 nmol isoniazid acetylated/min/mg protein. All HCAs tested, and 2-aminoanthracene and 2-aminofluorene exhibited high genotoxicity in the OY1002/1A2 strain, and genotoxicity of 2-amino-3-methylimidazo [4,5-f]quinoline was detected in both the OY1002/1A1 and OY1002/1A2 strains. 1-Amino-1,4-dimethyl-5H-pyrido[4.3-b]-indole and 3-amino-1-methyl-5H-pyrido[4,3-b]-indole were activated in the OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4 strains. Aflatoxin B-1 exhibited genotoxicity in the OY1002/1A2, OY1002/1A1, and OY1002/3A4 strains. beta -Naphthylamine and benzo[a]pyrene did not exhibit genotoxicity in any of the strains. These results suggest that CYP1A2 is the major cytochrom P450 enzyme involved in bioactivation of HCAs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The present study investigates human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that we specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. We did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. We found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions. (C) 2001 Wiley-Liss, Inc.
Resumo:
Expression of the beta(3) integrin subunit in melanoma in situ has been found to correlate with tumor thickness, the ability to invade and metastasize, and poor prognosis. Transition from the radial growth phase (RGP) to the vertical growth phase (VGP) is a critical step in melanoma progression and survival and is distinguished by the expression of beta(3), integrin. The molecular pathways that operate in melanoma cells associated with invasion and metastasis were examined by ectopic induction of the beta(3), integrin subunit in RGP SBcl2 and WM1552C melanoma cells, which converts these cells to a VGP phenotype. We used cDNA representational difference analysis subtractive hybridization between beta(3)-Positive and -negative melanoma cells to assess gene expression profile changes accompanying RGP to VGP transition. Fourteen fragments from known genes including osteonectin (also known as SPARC and BM-40) were identified after three rounds of representational difference analysis. Induction of osteonectin was confirmed by Northern and Western blot analysis and immunohistochemistry and correlated in organotypic cultures with the beta(3)-induced progression from RGP to VGP melanoma. Expression of osteonectin was also associated with reduced adhesion to vitronectin, but not to fibronectin. Osteonectin expression was not blocked when melanoma cells were cultured with anti-alpha(v)beta(3) LM609 mAb, mitogen-activated protein kinase, or protein kinase C inhibitors, indicating that other signaling pathway(s) operate through a(v)beta(3) integrin during conversion from RGP to VGP.
Resumo:
Two forms of the activated beta(1)-adrenoceptor exist, one that is stabilized by (-)-noradrenaline and is sensitive to blockade by (-)-propranolol and another which is stabilized by partial agonists such as (-)-pindolol and (-)-CGP 12177 but is relatively insensitive to (-)-propranolol. We investigated the effects of stimulation of the propranolol-resistant PI-adrenoceptor in the human heart. Myocardium from non-failing and failing human hearts were set up to contract at 1 Hz. In right atrium from non-ailing hearts in the presence of 200 nM (-)-propranolol, (-)-CGP 12177 caused concentration-dependent increases in contractile force (-logEC(50)[M] 7.3+/-0.1, E-max 23+/-1% relative to maximal (-)-isoprenaline stimulation of beta(1)- and beta(2)-adrenoceptors, n=86 patients), shortening of the time to reach peak force (-logEC(50)[M] 7.4+/-0.1, E-max 37+/-5%, n=61 patients) and shortening of the time to reach 50% relaxation (t(50%), -logEC(50)[M] 7.3+/-0.1, E-max 33+/-2%, n=61 patients). The potency and maxima of the positive inotropic effects were independent of Ser49Gly- and Gly389Arg-beta(1)-adrenoceptor polymorphisms but were potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (-logEC(50)[M] 7.7+/-0.1, E-max 68+/-6%, n=6 patients, P
Resumo:
Background Peroxisome proliferator activated receptor gamma (PPARgamma) is a ligand-activated transcription factor known to be central to both adipose tissue development and insulin action. Growth of adipose tissue requires differentiation of preadipocytes with acquisition of specific cellular functions including insulin sensitivity, leptin secretion and the capacity to store triglyceride. Dietary fatty acids and members of the thiazolidinedione class of compounds have been reported to influence adipogenesis at the transcriptional level. Here, we compare the effects of a dietary fatty acid, linoleic acid, and a thiazolidinedione, rosiglitazone, on biochemical and functional aspects of human preadipocyte differentiation in vitro . Materials and methods Human omental and subcutaneous preadipocytes were subcultured 2-3 times and subsequently differentiated for 21 days in the presence of either linoleic acid or rosiglitazone. Differentiation was assessed using a number of biochemical and functional parameters. Results Omental and subcutaneous preadipocytes differentiated in the presence of linoleic acid showed marked cytoplasmic triacylglycerol accumulation however, no biochemical markers of differentiation (LPL expression, G3PDH gene expression and enzyme activity and leptin expression or secretion) were detected. In contrast, treatment of these cells with rosiglitazone induced full biochemical differentiation as judged by all markers assessed, despite comparatively little lipid accumulation. The rosiglitazone effects were subcutaneous depot-specific. Cells treated with linoleic acid showed decreased glucose uptake cf rosiglitazone-treated cells. A luciferase reporter assay demonstrated that rosiglitazone potently activates h-peroxisome proliferator activated receptor gamma while linoleic acid had no effect. Conclusions These studies demonstrate that (a) human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation; (b) while omental preadipocytes are refractory to biochemical differentiation in vitro , they are able to accumulate triacylglycerol; and (c) rosiglitazone and linoleic acid may exert their effects via different biochemical pathways.
Resumo:
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.
Resumo:
The class B scavenger receptor CD36 is a component of the pattern recognition receptors on monocytes that recognizes a variety of molecules. CD36 expression in monocytes depends on exposure to soluble mediators. We demonstrate here that CD36 expression is induced in human monocytes following exposure to IL-13, a Th2 cytokine, via the peroxisome proliferator-activated receptor (PPAR)gamma pathway. Induction of CD36 protein was paralleled by an increase in CD36 mRNA. The PPARgamma pathway was demonstrated using transfection of a PPARgamma expression plasmid into the murine macrophage cell line RAW264.7, expressing very low levels of PPARgamma, and in peritoneal macrophages from PPARgamma-conditional null mice. We also show that CD36 induction by IL-13 via PPARgamma is dependent on phospholipase A2 activation and that IL-13 induces the production of endogenous 15-deoxy-Delta12,14-prostaglandin J2, an endogenous PPARgamma ligand, and its nuclear localization in human monocytes. Finally, we demonstrate that CD36 and PPARgamma are involved in IL-13-mediated phagocytosis of Plasmodium falciparum-parasitized erythrocytes. These results reveal a novel role for PPARgamma in the alternative activation of monocytes by IL-13, suggesting that endogenous PPARgamma ligands, produced by phospholipase A2 activation, could contribute to the biochemical and cellular functions of CD36.
Resumo:
Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.
Resumo:
Central serous chorioretinopathy (CSCR) is a vision-threatening eye disease with no validated treatment and unknown pathogeny. In CSCR, dilation and leakage of choroid vessels underneath the retina cause subretinal fluid accumulation and retinal detachment. Because glucocorticoids induce and aggravate CSCR and are known to bind to the mineralocorticoid receptor (MR), CSCR may be related to inappropriate MR activation. Our aim was to assess the effect of MR activation on rat choroidal vasculature and translate the results to CSCR patients. Intravitreous injection of the glucocorticoid corticosterone in rat eyes induced choroidal enlargement. Aldosterone, a specific MR activator, elicited the same effect, producing choroid vessel dilation -and leakage. We identified an underlying mechanism of this effect: aldosterone upregulated the endothelial vasodilatory K channel KCa2.3. Its blockade prevented aldosterone-induced thickening. To translate these findings, we treated 2 patients with chronic nonresolved CSCR with oral eplerenone, a specific MR antagonist, for 5 weeks, and observed impressive and rapid resolution of retinal detachment and choroidal vasodilation as well as improved visual acuity. The benefit was maintained 5 months after eplerenone withdrawal. Our results identify MR signaling as a pathway controlling choroidal vascular bed relaxation and provide a pathogenic link with human CSCR, which suggests that blockade of MR could be used therapeutically to reverse choroid vasculopathy.
Resumo:
Pancreatic cancer is one of the most lethal forms of human cancer. Although progress in oncology has improved outcomes in many forms of cancer, little progress has been made in pancreatic carcinoma and the prognosis of this malignancy remains grim. Several molecular abnormalities often present in pancreatic cancer have been defined and include mutations in K-ras, p53, p16, and DPC4 genes. Nuclear receptor Peroxisome Proliferator-Activated Receptor gamma (PPARγ) has a role in many carcinomas and has been found to be overexpressed in pancreatic cancer. It plays generally a tumor suppressor role antagonizing proteins promoting carcinogenesis such as NF-κB and TGFβ. Regulation of pathways involved in pancreatic carcinogenesis is effectuated by the Ubiquitin Proteasome System (UPS). This paper will examine PPARγ in pancreatic cancer, the regulation of this nuclear receptor by the UPS, and their relationship to other pathways important in pancreatic carcinogenesis.
Resumo:
Tumor necrosis factor-alpha (TNF-α) is a cytokine produced by activated macrophages and other cells. In order to verify whether the serum levels of TNF-α in American tegumentary leishmaniasis patients are associated with the process of cure or aggravation of the disease, 41 patients were studied: 26 cases of cutaneous leishmaniasis (CL) and 15 of mucocutaneous leishmaniasis (MCL). During active disease the serum levels of TNF-α of MCL patients were significantly higher than those of CL patients and control subjects (healthy individuals and cutaneous lesions from other etiologies). The MCL patients had serum titers of TNF-α significantly lower at the end of antimonial therapy than before therapy. After a six-month follow-up, the MCL patients had serum levels of TNF-α similar to those observed at the end of the therapy as well as to those of CL patients and control subjects. No significant variation in the serum levels of TNF-α was observed in CL patients throughout the study period (before, at the end of therapy and after a six-month follow-up). The possible relationship between the high TNF-α serum levels and severity of the disease is discussed.
Resumo:
The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.
Resumo:
Eosinophils preferentially accumulate at sites of chronic allergic diseases such as bronchial asthma. The mechanisms by which selective eosinophil migration occurs are not fully understood. However, interactions of cell-surface adhesion molecules on the eosinophil with molecular counterligands on endothelial and epithelial cells, and on extracellular matrix proteins, are likely to be critical during the recruitment process. One possible mechanism for selective eosinophil recruitment involves the alpha4beta 1 (VLA-4) integrin which is not expressed on neutrophils. Correlations have been found between infiltration of eosinophils and endothelial expression of VCAM-1, the ligand for VLA-4, in the lungs of asthmatic individuals as well as in late phase reactions in the lungs, nose and skin. Epithelial and endothelial cells respond to the Th2-type cytokines IL-4 and IL-13 with selective de novo expression of VCAM-1, consistent with the possible role of VCAM-1/VLA-4 interactions in eosinophil influx during allergic inflammation. Both beta 1 and beta 2 integrins on eosinophils exist in a state of partial activation. For example, eosinophils can be maximally activated for adhesion to VCAM-1 or fibronectin after exposure to beta 1 integrin-activating antibodies or divalent cations, conditions that do not necessarily affect the total cell surface expression of beta 1 integrins. In contrast, cytokines like IL-5 prevent beta 1 integrin activation while promoting beta 2 integrin function. Furthermore, ligation of integrins can regulate the effector functions of the cell. For example, eosinophil adhesion via beta 1 and/or beta 2 integrins has been shown to alter a variety of functional responses including degranulation and apoptosis. Thus, integrins appear to be important in mediating eosinophil migration and activation in allergic inflammation. Strategies that interfere with these processes may prove to be useful for treatment of allergic diseases.