990 resultados para Acoustic Pressure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic emission (AE) is the phenomenon where stress waves are generated due to rapid release of energy within a material caused by sources such as crack initiation or growth. AE technique involves recording the stress waves by means of sensors and subsequent analysis of the recorded signals to gather information about the nature of the source. Though AE technique is one of the popular non destructive evaluation (NDE) techniques for structural health monitoring of mechanical, aerospace and civil structures; several challenges still exist in successful application of this technique. Presence of spurious noise signals can mask genuine damage‐related AE signals; hence a major challenge identified is finding ways to discriminate signals from different sources. Analysis of parameters of recorded AE signals, comparison of amplitudes of AE wave modes and investigation of uniqueness of recorded AE signals have been mentioned as possible criteria for source differentiation. This paper reviews common approaches currently in use for source discrimination, particularly focusing on structural health monitoring of civil engineering structural components such as beams; and further investigates the applications of some of these methods by analyzing AE data from laboratory tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical report describes the methods used to obtain a list of acoustic indices that are used to characterise the structure and distribution of acoustic energy in recordings of the natural environment. In particular it describes methods for noise reduction from recordings of the environment and a fast clustering algorithm used to estimate the spectral richness of long recordings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic sensors provide an effective means of monitoring biodiversity at large spatial and temporal scales. They can continuously and passively record large volumes of data over extended periods, however these data must be analysed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced users can produce accurate results, however the time and effort required to process even small volumes of data can make manual analysis prohibitive. Our research examined the use of sampling methods to reduce the cost of analysing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilising five days of manually analysed acoustic sensor data from four sites, we examined a range of sampling rates and methods including random, stratified and biologically informed. Our findings indicate that randomly selecting 120, one-minute samples from the three hours immediately following dawn provided the most effective sampling method. This method detected, on average 62% of total species after 120 one-minute samples were analysed, compared to 34% of total species from traditional point counts. Our results demonstrate that targeted sampling methods can provide an effective means for analysing large volumes of acoustic sensor data efficiently and accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to determine the Intraocular Pressure (IOP) response to differing levels of dehydration. Seven males participated in a 90 minute treadmill walk (5 km/h and 1 % grade) in both a cool (22 °C) and hot (43 °C) climate. At Baseline and at 30 minute intervals measurements of IOP, by tonometery, and indicators of hydration status (nude weight and plasma osmolality (Posm)) were taken. Body temperature and heart rate were also measured at these time points. Statistically significant interactions (time point (4) by trial (2)) were observed for IOP (F = 10.747, p = 0.009) and body weight loss (F = 50.083, p < 0.001) to decrease, and Posm (F = 34.867, p < 0.001) to increase, by a significantly greater amount during the hot trial compared to the cool. A univariate general linear model showed a significant relationship between IOP and body weight loss (F = 37.63, p < 0.001) and Posm (F = 38.53, p < 0.001). A significant interaction was observed for body temperature (F = 20.908, p < 0.001) and heart rate (F = 25.487, p < 0.001) between the trials and time points, but there was negligible association between these variables and IOP (Pearson correlation coefficient < ±0.5). The present study provides evidence to suggest that IOP is influenced by hydration status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, as the gathered information is from the crowd, the data quality is always hard to manage. There are many ways to manage data quality, and reputation management is one of the common approaches. In recent year, many research teams have deployed many audio or image sensors in natural environment in order to monitor the status of animals or plants. The collected data will be analysed by ecologists. However, as the amount of collected data is exceedingly huge and the number of ecologists is very limited, it is impossible for scientists to manually analyse all these data. The functions of existing automated tools to process the data are still very limited and the results are still not very accurate. Therefore, researchers have turned to recruiting general citizens who are interested in helping scientific research to do the pre-processing tasks such as species tagging. Although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Therefore, this research aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we aim to investigate how to use reputation management to enhance data reliability. Reputation systems have been used to solve the uncertainty and improve data quality in many marketing and E-Commerce domains. The commercial organizations which have chosen to embrace the reputation management and implement the technology have gained many benefits. Data quality issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. However, research on reputation management in this area is relatively new. We therefore start our investigation by examining existing reputation systems in different domains. Then we design novel reputation management approaches for Citizen Science projects to categorise participants and data. We have investigated some critical elements which may influence data reliability in Citizen Science projects. These elements include personal information such as location and education and performance information such as the ability to recognise certain bird calls. The designed reputation framework is evaluated by a series of experiments involving many participants for collecting and interpreting data, in particular, environmental acoustic data. Our research in exploring the advantages of reputation management in Citizen Science (or crowdsourcing in general) will help increase awareness among organizations that are unacquainted with its potential benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/objectives This study estimates the economic outcomes of a nutrition intervention to at-risk patients compared with standard care in the prevention of pressure ulcer. Subjects/methods Statistical models were developed to predict ‘cases of pressure ulcer avoided’, ‘number of bed days gained’ and ‘change to economic costs’ in public hospitals in 2002–2003 in Queensland, Australia. Input parameters were specified and appropriate probability distributions fitted for: number of discharges per annum; incidence rate for pressure ulcer; independent effect of pressure ulcer on length of stay; cost of a bed day; change in risk in developing a pressure ulcer associated with nutrition support; annual cost of the provision of a nutrition support intervention for at-risk patients. A total of 1000 random re-samples were made and the results expressed as output probability distributions. Results The model predicts a mean 2896 (s.d. 632) cases of pressure ulcer avoided; 12 397 (s.d. 4491) bed days released and corresponding mean economic cost saving of euros 2 869 526 (s.d. 2 078 715) with a nutrition support intervention, compared with standard care. Conclusion Nutrition intervention is predicted to be a cost-effective approach in the prevention of pressure ulcer in at-risk patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to develop a second-moment closure with a near-wall turbulent pressure diffusion model for three-dimensional complex flows, and to evaluate the influence of the turbulent diffusion term on the prediction of detached and secondary flows. A complete turbulent diffusion model including a near-wall turbulent pressure diffusion closure for the slow part was developed based on the tensorial form of Lumley and included in a re-calibrated wall-normal-free Reynolds-stress model developed by Gerolymos and Vallet. The proposed model was validated against several one-, two, and three-dimensional complex flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.