894 resultados para Accessibility and mobility


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data on sleep-related behaviors were collected for a group of central Yunnan black crested gibbons (Nomascus concolor jingdongensis) at Mt. Wuliang, Yunnan, China from March 2005 to April 2006. Members of the group usually formed four sleeping units (adult male and juvenile, adult female with one semi-dependent black infant, adult female with one dependent yellow infant, and subadult male) spread over different sleeping trees. Individuals or units preferred specific areas to sleep; all sleeping sites were situated in primary forest, mostly (77%) between 2,200 and 2,400 m in elevation. They tended to sleep in the tallest and thickest trees with large crowns on steep slopes and near important food patches. Factors influencing sleeping site selection were (1) tree characteristics, (2) accessibility, and (3) easy escape. Few sleeping trees were used repeatedly by the same or other members of the group. The gibbons entered the sleeping trees on average 128 min before sunset and left the sleeping trees on average 33 min after sunrise. The lag between the first and last individual entering the trees was on average 17.8 min. We suggest that sleep-related behaviors are primarily adaptations to minimize the risk of being detected by predators. Sleeping trees may be chosen to make approach and attack difficult for the predator, and to provide an easy escape route in the dark. In response to cold temperatures in a higher habitat, gibbons usually sit and huddle together during the night, and in the cold season they tend to sleep on ferns and/or orchids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ba1.6Ca2.3Y1.1Fe5O13 is an Fe3+ oxide adopting a complex perovskite superstructure, which is an ordered intergrowth between the Ca2Fe2O5 and YBa2Fe3O8 structures featuring octahedral, square pyramidal, and tetrahedral B sites and three distinct A site environments. The distribution of A site cations was evaluated by combined neutron and X-ray powder diffraction. Consistent with the Fe3+ charge state, the material is an antiferromagnetic insulator with a Néel temperature of 480-485 °C and has a relatively low d.c. conductivity of 2.06 S cm-1 at 700 °C. The observed area specific resistance in symmetrical cell cathodes with the samarium-doped ceria electrolyte is 0.87 Ω cm2 at 700 °C, consistent with the square pyramidal Fe3+ layer favoring oxide ion formation and mobility in the oxygen reduction reaction. Density functional theory calculations reveal factors favoring the observed cation ordering and its influence on the electronic structure, in particular the frontier occupied and unoccupied electronic states. © 2010 American Chemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hexachlorobenzene (HCB) is a chlorinated aromatic hydrocarbon that was widely used for seed dressing in prevention of fungal growth on crops, and also as a component of fireworks, ammunition, and synthetic rubbers. Because of its resistance to degradation and mobility, HCB is widely distributed throughout the environment and is accumulated through food chains in different ecosystems. In this study, a preliminary investigation was carried out on the bioaccumulation and the toxic effects of HCB in the microbial (protozoan in particular) communities in the Fuhe River, Wuhan, a water body receiving industrial wastewaters containing HCB and other pollutants, using the standardized polyurethane foam units (PFU) method. Field samples were taken from eight stations established along the Fuhe River in January and August 2006. The concentration ratios of HCB in microbial communities and in water were 9.66-18.64, and the microbial communities accumulated 13.29-56.88 mu g/L of HCB in January and 0.82-10.25 mu g/L HCB in August. Correlation analysis showed a negative correlation between the HCB contents in the microbial assemblage, and the number of species and the diversity index of the protozoan communities. This study demonstrated the applicability of the PFU method in monitoring the effects of HCB on the level of microbial communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypothesis: In parasites that use hosts for offspring development, adults may base oviposition decisions on a range of host traits related either to host quality or the co-evolutionary relationship between parasite and host. We examined whether host quality or co-evolutionary dynamics drive the use of hosts in the bitterling-mussel relationship. Organisms: Six species of bitterling fish (Acheilognathinae) and eight species of freshwater mussels (Unionidae, Corbiculidae) that are used by bitterling for oviposition. Site of experiments: Experimental tanks in Wuhan, China, at the site of the natural distribution of the studied species. Methods: Three experiments that controlled for host accessibility and interspecific interactions were conducted to identify host preferences among bitterling fishes and their mussel hosts. We started with a broad interspecific comparison. We then tested bitterling behavioural choices, their temporal stability, and mussel host ejection behaviour of the eggs of generalist and specialist bitterling species. Finally, we measured host mussel quality based on respiration rate and used published studies on mussel gill structure to infer mussel suitability as hosts for bitterling eggs. Results: We found significant interspecific differences among bitterling species in their use of mussel hosts. Bitterling species varied in their level of host specificity and identity of preferred hosts. Host preferences were flexible even among apparently specialized species and fishes switched their preferences adaptively when the quality of individuals of preferred host species declined. Mussels varied considerably in their response to oviposition through egg ejections. Host preference by a generalist bitterling species correlated positively with host quality measured as the efficiency of the mussel gills to extract oxygen from inhaled water. Host ability to eject bitterling eggs correlated positively with their relative respiration rate, probably due to a higher velocity of water circulating in the mussel gill chamber.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied the effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films deposited by radio frequency magnetron sputtering. It is found that the ZnO H film is highly transparent with the average transmittance of 92% in the visible range. Both carrier concentration and mobility are increased after hydrogen plasma treatment, correspondingly, the resistivity of the ZnO H films achieves the order of 10(-3) cm. We suggest that the incorporated hydrogen not only passivates most of the defects and/or acceptors present, but also introduces shallow donor states such as the V-O-H complex and the interstitial hydrogen H-i. Moreover, the annealing data indicate that H-i is unstable in ZnO, while the V-O-H complex remains stable on the whole at 400 degrees C, and the latter diffuses out when the annealing temperature increases to 500 degrees C. These results make ZnO H more attractive for future applications as transparent conducting electrodes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

InN thin films with different thicknesses are grown by metal organic chemical vapor deposition, and the dislocations, electrical and optical properties are investigated. Based on the model of mosaic crystal, by means of X-ray diffraction skew geometry scan, the edge dislocation densities of 4.2 x 10(10) cm(-2) and 6.3 x 10(10) cm(-2) are fitted, and the decrease of twist angle and dislocation density in thicker films are observed. The carrier concentrations of 9 x 10(18) cm(-3) and 1.2 x 10(18) cm(-3) are obtained by room temperature Hall effect measurement. V-N is shown to be the origin of background carriers, and the dependence of concentration and mobility on film thickness is explained. By the analysis of S-shape temperature dependence of photoluminescence peak, the defects induced carrier localization is suggested be involved in the photoluminescence. Taking both the localization and energy band shrinkage effect into account, the localization energies of 5.05 meV and 5.58 meV for samples of different thicknesses are calculated, and the decrease of the carrier localization effect in the thicker sample can be attributed to the reduction of defects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tin-doped indium oxide (ITO) thin films were prepared by reactive thermal evaporation on the glass substrates. The effects of substrate temperatures (T-s) on the grain preferred orientation, the electrical and optical properties of ITO films were studied. X-ray diffraction (XRD) patterns indicated that the preferred orientation of film changes from (222) to (400) as T, > 200 degrees C. It can be explained by that the low-index crystallographic planes are easier to be formed when the adatoms have high surface mobility. The Hall measurements indicated that both the concentration and mobility of carrier increase with increasing T,,,. The grain orientation of film does not influence the transmissivity and the carrier concentration, but enhances the carrier mobility. The transmissivity of ITO films is over 90% in the visible wavelength region (except that of the film deposited at 125 degrees C). A minimum resistivity of 5 X 10-4 Omega cm is achieved for the (400) preferred orientation film. Thus, the highest figure of merit of 3.5 x 10(-2) square/Omega is obtained for the film with (400) preferred orientation. The correlation between the preferred orientation and electrical and optical properties are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magnetotransport properties of In-0.53 GaAs/In-0.52 AlAs high electron mobility transistor (HEMT) structures with different channel thickness of 10-35 nm have been investigated in magnetic fields up to 13 T at 1.4 K. Fast Fourier transform has been employed to obtain the subband density and mobility of the two-dimensional electron gas in these HEMT structures. We found that the thickness of channel does not significantly enhance the electron density of the two-dimensional electron gas, however, it has strong effect on the proportion of electrons inhabited in different subbands. When the size of channel is 20 nm, the number of electrons occupying the excited subband, which have higher mobility, reaches the maximum. The experimental values obtained in this work are useful for the design and optimization of InGaAs/InAlAs HEMT devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In our recent report, [Xu , Appl. Phys. Lett. 76, 152 (2000)], profile distributions of five elements in the GaN/sapphire system have been obtained using secondary ion-mass spectroscopy. The results suggested that a thin degenerate n(+) layer at the interface is the main source of the n-type conductivity for the whole film. The further studies in this article show that this n(+) conductivity is not only from the contribution of nitride-site oxygen (O-N), but also from the gallium-site silicon (Si-Ga) donors, with activation energies 2 meV (for O-N) and 42 meV (for Si-Ga), respectively. On the other hand, Al incorporated on the Ga sublattice reduces the concentration of compensating Ga-vacancy acceptors. The two-donor two-layer conduction, including Hall carrier concentration and mobility, has been modeled by separating the GaN film into a thin interface layer and a main bulk layer of the GaN film. The bulk layer conductivity is to be found mainly from a near-surface thin layer and is temperature dependent. Si-Ga and O-N should also be shallow donors and V-Ga-O or V-Ga-Al should be compensation sites in the bulk layer. The best fits for the Hall mobility and the Hall concentration in the bulk layer were obtained by taking the acceptor concentration N-A=1.8x10(17) cm(-3), the second donor concentration N-D2=1.0x10(18) cm(-3), and the compensation ratio C=N-A/N-D1=0.6, which is consistent with Rode's theory. Saturation of carriers and the low value of carrier mobility at low temperature can also be well explained. (C) 2001 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The substitution of a small fraction x of nitrogen atoms, for the group V elements in conventional III-V semiconductors such as GaAs and GaSb strongly perturbs the conduction band of the host semiconductor. In this thesis we investigate the effects of nitrogen states on the band dispersion, carrier scattering and mobility of dilute nitride alloys. In the supercell model we solve the single particle Hamiltonian for a very large supercell containing randomly placed nitrogen. This model predicts a gap in the density of states of GaNxAs1−x, where this gap is filled in the Green’s function model. Therefore we develop a self-consistent Green’s function (SCGF) approach, which provides excellent agreement with supercell calculations and reveals a gap in the DOS, in contrast with the results of previous non-self-consistent Green’s function calculations. However, including the distribution of N states destroys this gap, as seen in experiment. We then examine the high field transport of carriers by solving the steadystate Boltzmann transport equation and find that it is necessary to include the full distribution of N levels in order to account for the small, low-field mobility and the absence of a negative differential velocity regime observed experimentally with increasing x. Overall the results account well for a wide range of experimental data. We also investigate the band structure, scattering and mobility of carriers by finding the poles of the SCGF, which gives lower carrier mobility for GaNxAs1−x, compared to those already calculated, in better agreement with experiments. The calculated optical absorption spectra for InyGa1−yNxAs1−x and GaNxSb1−x using the SCGF agree well with the experimental data, confirming the validity of this approach to study the band structure of these materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis focuses on two Western European cinematic cities, and two unique periods of their respective nations’ histories, in a bid to “locate” the transnational within a contemporary European milieu. I argue that my geo-cinematic case studies are emblematic of broader questions of the problematics of national identity in contemporary Europe in the face of cross-national flows yet, as a result of their representations as cities both “anchored” and “in flux”, they reject a European postnational identity. Through its engagement with cinematic Rome as the “Eternal City” of Europe and cinematic Dublin as the “newly Europeanised” city, my thesis traces how representations and aesthetics of the urban spaces of these two cities correspond with the tensions at the heart of the respective eras in question. Via the figures that inhabit it, navigate it and search for it, the city is utilised to highlight fixity and mobility, centrality and dislocation, in explicit and implicit ways, amid the rapidly changing landscape of its national terrain. It is through my analyses of the filmed places and sociopolitical, socioeconomic and sociocultural spaces of these capital cities under the rubric of the transnational that this research demonstrates the “pluralities” of the construct in its cinematic manifestations. It is also my aim to evaluate the concept of cinematic transnationalism when identifying and accounting for representations of a specific national, historical timeframe, when the momentousness of the changes that occur is not bound by the national, but rather is reflective of the influence of both domestic and external forces. To this end, my thesis draws attention to instances in which the nation is shown to persist and resist dilution, arguing that it is only against the backdrop and continuity of the nation (in its evershifting guises) that the transnational can be conceived in representative and aesthetic terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorphous and hydrogenated amorphous silicon and interfaces of amorphous and crystalline silicon, with the ultimate aim of understanding the photovoltaic properties of core-shell crystalline amorphous Si nanowire structures. We have shown, unexpectedly, from the simulations, that our understanding of hydrogenated bulk a-Si needs to be revisited, with our robust finding that when fully saturated with hydrogen, bulk a-Si exhibits a constant optical energy gap, irrespective of the hydrogen concentration in the sample. Unsaturated a-Si:H, with a lower than optimum hydrogen content, shows a smaller optical gap, that increases with hydrogen content until saturation is reached. The mobility gaps obtained from an analysis of the electronic states show similar behavior. We also obtained that the optical and mobility gaps show a volcano curve as the H content is varied from 7% (undersaturation) to 18% (mild oversaturation). In the case of mild over saturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structures shows the extra H atoms in this case form a bridge between neighboring silicon atoms which increases the corresponding Si-Si distance and promotes bond length disorder in the sample. That has the potential to enhance the Staebler-Wronski effect. Planar interface models of amorphous-crystalline silicon have been generated in Si (100), (110) and (111) surfaces. The interface models are characterized by structure, RDF, electronic density of states and optical absorption spectrum. We find that the least stable (100) surface will result in the formation of the thickest amorphous silicon layer, while the most stable (110) surface forms the smallest amorphous region. We calculated for the first time band offsets of a-Si:H/c-Si heterojunctions from first principles and examined the influence of different surface orientations and amorphous layer thickness on the offsets and implications for device performance. The band offsets depend on the amorphous layer thickness and increase with thickness. By controlling the amorphous layer thickness we can potentially optimise the solar cell parameters. Finally, we have successfully generated different amorphous layer thickness of the a-Si/c-Si and a-Si:H/c-Si 5 nm nanowires from heat and quench. We perform structural analysis of the a-Si-/c-Si nanowires. The RDF, Si-Si bond length distributions, and the coordination number distributions of amorphous regions of the nanowires reproduce similar behaviour compared to bulk amorphous silicon. In the final part of this thesis we examine different surface terminating chemical groups, -H, - OH and –NH2 in (001) GeNW. Our work shows that the diameter of Ge nanowires and the nature of surface terminating groups both play a significant role in both the magnitude and the nature of the nanowire band gaps, allowing tuning of the band gap by up to 1.1 eV. We also show for the first time how the nanowire diameter and surface termination shifts the absorption edge in the Ge nanowires to longer wavelengths. Thus, the combination of nanowire diameter and surface chemistry can be effectively utilised to tune the band gaps and thus light absorption properties of small diameter Ge nanowires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From 2008-2012, a dramatic upsurge in incidents of maritime piracy in the Western Indian Ocean led to renewed global attention to this region: including the deployment of multi national naval patrols, attempts to prosecute suspected pirates, and the development of financial interdiction systems to track and stop the flow of piracy ransoms. Largely seen as the maritime ripple effect of anarchy on land, piracy has been slotted into narratives of state failure and problems of governance and criminality in this region.

This view fails to account for a number of factors that were crucial in making possible the unprecedented rise of Somali piracy and its contemporary transformation. Instead of an emphasis on failed states and crises of governance, my dissertation approaches maritime piracy within a historical and regional configuration of actors and relationships that precede this round of piracy and will outlive it. The story I tell in this work begins before the contemporary upsurge of piracy and closes with a foretaste of the itineraries beyond piracy that are being crafted along the East African coast.

Beginning in the world of port cities in the long nineteenth century, my dissertation locates piracy and the relationship between trade, plunder, and state formation within worlds of exchange, including European incursions into this oceanic space. Scholars of long distance trade have emphasized the sociality engendered through commerce and the centrality of idioms of trust and kinship in structuring mercantile relationships across oceanic divides. To complement this scholarship, my work brings into view the idiom of protection: as a claim to surety, a form of tax, and a moral claim to authority in trans-regional commerce.

To build this theory of protection, my work combines archival sources with a sustained ethnographic engagement in coastal East Africa, including the pirate ports of Northern Somalia, and focuses on the interaction between land-based pastoral economies and maritime trade. This connection between land and sea calls attention to two distinct visions of the ocean: one built around trade and mobility and the other built on the ocean as a space of extraction and sovereignty. Moving between historical encounters over trade and piracy and the development of a national maritime economy during the height of the Somali state, I link the contemporary upsurge of maritime piracy to the confluence of these two conceptualizations of the ocean and the ideas of capture, exchange, and redistribution embedded within them.

The second section of my dissertation reframes piracy as an economy of protection and a form of labor implicated within other legal and illegal economies in the Indian Ocean. Based on extensive field research, including interviews with self-identified pirates, I emphasize the forms of labor, value, and risk that characterize piracy as an economy of protection. The final section of my dissertation focuses on the diverse international, regional, and local responses to maritime piracy. This section locates the response to piracy within a post-Cold War and post-9/11 global order and longer attempts to regulate and assuage the risks of maritime trade. Through an ethnographic focus on maritime insurance markets, navies, and private security contractors, I analyze the centrality of protection as a calculation of risk and profit in the contemporary economy of counter-piracy.

Through this focus on longer histories of trade, empire, and regulation my dissertation reframes maritime piracy as an economy of protection straddling boundaries of land and sea, legality and illegality, law and economy, and history and anthropology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Research This paper outlines some of the key findings from an evaluation of the project and demonstrates that EC funded projects such as this, which seek to promote cross border collaboration and understanding (i.e. across organisational, sectoral and geographical boundaries) offer considerable learning potential – not least about variances in health politics across different communities. However, for this learning to be realised a comprehensive system of knowledge management needs to be an integral part of project planning alongside a system for sustaining embryonic professional networks. The concept of managing relationships was also a key part of the projects success. Executing a project funded by the EU demands the development of complex organisational skills to negotiate all the administrative challenges en route to successful completion and this project in particular relied for its success on the development of social relationships of trust and mutual respect across national, professional and social boundaries. Context A three–year European Commission funded project designed to exchange a wide range of staff (professional semiprofessional and voluntary staff in health and social care) project led by the University of Greenwich (UK) and the Université Catholique de Lille, France was completed this year (February 2008). The project was complex because it involved working in different national contexts, was multi-disciplinary, and demanded the negotiation of multiple boundaries. Theories A mixed method evaluation including written reports gathered immediately after each exchange visit and a post hoc series of individual interviews and focus groups was conducted in order to gain qualitative information (from the participants perspective) on their experiences and to identify any learning gained. Results Analysis of the data provided evidence of learning on a number of levels; personally, inter and intra professionally and organisationally as well as across sectors and also from a project management perspective. The learning crystallised around the extent of the differences noted by the participants between the UK and the French health and social care systems despite geographical proximity, common membership of the EU and many shared challenges in health and social care. The extent of these differences, noted at every level from policy to practice proved a rich source for reflection on organisational philosophies, ways of working, distribution of resources, professional roles and autonomy and professional registration and mobility - in short on health politics at ‘macro’ and ‘micro’ levels.