991 resultados para Acceptor moieties
Resumo:
It has been shown previously that the binding of oxidized low-density lipoprotein (OxLDL) to resident mouse peritoneal macrophages can be inhibited (up to 70%) by the apoprotein B (apoB) isolated from OxLDL, suggesting that macrophage recognition of OxLDL is primarily dependent on its modified protein moiety. However, recent experiments have demonstrated that the lipids isolated from OxLDL and reconstituted into a microemulsion can also strongly inhibit uptake of OxLDL (up to 80%). The present studies show that lipid microemulsions prepared from OxLDL bind to thioglycollate-elicited macrophages at 4°C in a saturable fashion and inhibit the binding of intact OxLDL and also of the apoB from OxLDL. Reciprocally, the binding of the OxLDL-lipid microemulsions was strongly inhibited by intact OxLDL. A conjugate of synthetic 1-palmitoyl 2(5-oxovaleroyl) phosphatidylcholine (an oxidation product of 1-palmitoyl 2-arachidonoyl phosphatidylcholine) with serum albumin, shown previously to inhibit macrophage binding of intact OxLDL, also inhibited the binding of both the apoprotein and the lipid microemulsions prepared from OxLDL. Finally, a monoclonal antibody against oxidized phospholipids, one that inhibits binding of intact OxLDL to macrophages, also inhibited the binding of both the resolubilized apoB and the lipid microemulsions prepared from OxLDL. These studies support the conclusions that: (i) at least some of the macrophage receptors for oxidized LDL can recognize both the lipid and the protein moieties; and (ii) oxidized phospholipids, in the lipid phase of the lipoprotein and/or covalently linked to the apoB of OxLDL, likely play a role in that recognition.
Resumo:
The N,N'-diacetyllactosediamine (lacdiNAc) pathway of complex-type oligosaccharide synthesis is controlled by a UDP-GalNAc:GlcNAc beta-R beta 1-->4-N-acetylgalac-tesaminyltransferase (beta 4-GalNAcT) that acts analogously to the common UDP-Gal:GlcNAc beta-R beta 1-->4-galactosyltransferase (beta 4-GalT). LacdiNAc-based chains particularly occur in invertebrates and cognate beta 4-GalNAcTs have been identified in the snail Lymnaea stagnalis, in two schistosomal species, and in several lepldopteran insect cell lines. Because of the similarity in reactions catalyzed by both enzymes, we investigated whether L. stagnalis albumen gland beta 4-GalNAcT would share with mammalian beta 4-GalT the property of interacting with alpha-lactalbumin (alpha-LA), a protein that only occurs in the lactating mammary gland, to form a complex in which the specificity of the enzyme is changed. It was found that, under conditions where beta 4-GalT forms the lactose synthase complex with alpha-LA, the snail beta 4-GalNAcT was induced by this protein to act on Glc with a > 100-fold increased efficiency, resulting in the formation of the lactose analog GalNAc beta 1-->4Glc. This forms the second example of a glycosyltransferase, the specificity of which can be altered by a modifier protein. So far, however, no protein fraction could be isolated from L. stagnalis that could likewise interact with the beta 4-GalNAcT. Neither had lysozyme c, a protein that is homologous to alpha-LA, an effect on the specificity of the enzyme. These results raise the question of how the capability to interact with alpha-LA has been conserved in the snail enzyme during evolution without any apparent selective pressure. They also suggest that snail beta 4-GalNAcT and mammalian beta 4-GalT show similarity at a molecular level and allows the identification of the beta 4-GalNAcT as a candidate member of the beta 4-GalT family.
Resumo:
We extend the sensitivity of fluorescence resonance energy transfer (FRET) to the single molecule level by measuring energy transfer between a single donor fluorophore and a single acceptor fluorophore. Near-field scanning optical microscopy (NSOM) is used to obtain simultaneous dual color images and emission spectra from donor and acceptor fluorophores linked by a short DNA molecule. Photodestruction dynamics of the donor or acceptor are used to determine the presence and efficiency of energy transfer. The classical equations used to measure energy transfer on ensembles of fluorophores are modified for single-molecule measurements. In contrast to ensemble measurements, dynamic events on a molecular scale are observable in single pair FRET measurements because they are not canceled out by random averaging. Monitoring conformational changes, such as rotations and distance changes on a nanometer scale, within single biological macromolecules, may be possible with single pair FRET.
Resumo:
A total of 1268 available (excluding mitochondrial) tRNA sequences was used to reconstruct the common consensus image of their acceptor domains. Its structure appeared as a 11-bp-long double-stranded palindrome with complementary triplets in the center, each flanked by the 3'-ACCD and NGGU-5' motifs on each strand (D, base determinator). The palindrome readily extends up to the modern tRNA-like cloverleaf passing through an intermediate hairpin having in the center the single-stranded triplet, in supplement to its double-stranded precursor. The latter might represent an original anticodon-codon pair mapped at 1-2-3 positions of the present-day tRNA acceptors. This conclusion is supported by the striking correlation: in pairs of consensus tRNAs with complementary anticodons, their bases at the 2nd position of the acceptor stem were also complementary. Accordingly, inverse complementarity was also evident at the 71st position of the acceptor stem. With a single exception (tRNA(Phe)-tRNA(Glu) pair), the parallelism is especially impressive for the pairs of tRNAs recognized by aminoacyl-tRNA synthetases (aaRS) from the opposite classes. The above complementarity still doubly presented at the key central position of real single-stranded anticodons and their hypothetical double-stranded precursors is consistent with our previous data pointing to the double-strand use of ancient RNAs in the origin of the main actors in translation- tRNAs with complementary anticodons and the two classes of aaRS.
Resumo:
A principal feature of the crystal structures of tRNAs is an L-shaped tertiary conformation in which the aminoacyl acceptor stem and the anticodon stem are approximately perpendicular. However, the anticodon-acceptor interstem angle has not been precisely quantified in solution for any tRNA. Such a determination would represent an important test of the predicted global conformation of tRNAs in solution. To this end, we have constructed a yeast tRNA(Phe) heteroduplex RNA molecule in which the anticodon and acceptor stems of the tRNA have each been extended by approximately 70 base pairs. A comparison of the rotational decay times of the heteroduplex molecule and a linear control yields an interstem angle of 89 +/- 4 degrees in 4 mM magnesium chloride/100 microM spermine hydrochloride, essentially identical to the corresponding angle observed in the crystal under similar buffer and temperature conditions. The current approach is applicable to the study of a wide variety of RNA molecules that possess elements of nonhelical structure.
Resumo:
Electron donor-acceptor (EDA) interactions are widely involved in chemistry and their understanding is essential to design new technological applications in a variety of fields ranging from material sciences and chemical engineering to medicine. In this work, we study EDA complexes of carbon dioxide with ketones using several ab initio and Density Functional Theory methods. Energy contributions to the interaction energy have been analyzed in detail using both variational and perturbational treatments. Dispersion energy has been shown to play a key role in explaining the high stability of a non-conventional structure, which can roughly be described by a cooperative EDA interaction.
Resumo:
The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L-3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraaza-cyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2](2+) (Chart 1). By contrast, Stern-Volmer analysis of intermolecular quenching of [ZnL2](2+) by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Soil-dwelling Streptomyces bacteria are known for their ability to produce biologically active compounds such as antimicrobial, immunosuppressant, antifungal and anticancer drugs. S. nogalater is the producer of nogalamycin, a potential anticancer drug exhibiting high cytotoxicity and activity against human topoisomerases I and II. Nogalamycin is an anthracycline polyketide comprising a four-ring aromatic backbone,a neutral deoxy sugar at C7, and an amino sugar attached via an O–C bond at C1 and a C–C bond between C2 and C5´´. This kind of attachment of the amino sugar is unusual thus making the structure of the compound highly interesting. The sugar is also associated with the biological activity of nogalamycin, as it facilitates binding to DNA. Furthermore, the sugar moieties of anthracyclines are often crucial for their biological activity. Together the interesting attachment of the amino sugar and the general reliance of polyketides on the sugar moieties for bioactivity have made the study of the biosynthesis of nogalamycin attractive. The sugar moieties are typically attached by glycosyltransferases, which use two substrates: the donor and the acceptor. The literature review of the thesis is focused on the glycosylation of polyketides and the possibilities to alter their glycosylation patterns. My own thesis work revolves around the biosynthesis of nogalamycin. We have elucidated the individual steps that lead to its rather unique structure. We reconstructed the whole biosynthetic pathway in the heterologous host S. albus using a cosmid and a plasmid. In the process, we were able to isolate new compounds when the cosmid, which contains the majority of the nogalamycin gene cluster, was expressed alone in the heterologous host. The new compounds included true intermediates of the pathway as well as metabolites, which were most likely altered by the endogenous enzymes of the host. The biological activity of the most interesting new products was tested against human topoisomerases I and II, and they were found to exhibit such activities. The heterologous expression system facilitated the generation of mutants with inactivated biosynthetic genes. In that process, we were able to identify the functions of the glycosyltransferases SnogE and SnogD, solve the structure of SnogD, discover a novel C1-hydroxylase system comprising SnoaW and SnoaL2, and establish that the two homologous non-heme α-ketoglutarate and Fe2+ dependent enzymes SnoK and SnoN catalyze atypical reactions on the pathway. We demonstrated that SnoK was responsible for the formation of the additional C–C bond, whereas SnoN is an epimerase. A combination of in vivo and in vitro techniques was utilized to unravel the details of these enzymes. Protein crystallography gave us an important means to understand the mechanisms. Furthermore, the solved structures serve as platforms for future rational design of the enzymes.
Resumo:
[EN] Herein we investigate the feasibility of detecting photo-induced surface stress changes using the deflection response of cantilevers. For this purpose, silicon microcantilevers have been functionalised with spiropyran photochromic molecules, using both a monolayer and a polymeric brushes approach. Uponultraviolet light irradiation, the spiropyran unit is converted to the merocyanine form due to the photo-induced cleavage of the Cspiro-O bond. The two forms of the molecule have dramatically different charge,polarity and molecular conformations. This makes spiropyrans an ideal system to study the correlation between photo-induced molecular changes and corresponding changes in surface stress. Our investigations include monitoring the changes in static cantilever deflection, and consequently, surface stress of the spiropyran functionalised cantilevers on exposure to ultraviolet light. Cantilever deflection data reveals that ultraviolet induced conformational changes in the spiropyran moiety cause a change incompressive surface stress and this varies with the type of functionalisation method implemented. The change in surface stress response from the spiropyran polymer brushes functionalised cantilevers gives an average surface stress change of 98 Nm−1(n = 24) while the spiropyran monolayer coated cantilevers have an average surface stress change of about 446 Nm−1(n = 8) upon irradiation with UV light.
Resumo:
Deep Level Transient Spectroscopy (DLTS) has been used to investigate hole traps in the depletion region of Schottky barrier diodes formed from electropolymerised poly(3-methylthiophene). The capacitance transients appear to be composed of a fast and a slow component. Analysis of the slower component using the ''rate window'' technique yields isochronal differential capacitance curves that depend on temperature in the manner predicted by theory.
Resumo:
Both the DC and AC admittance of Schottky barrier diodes formed at the interface of aluminium and poly(3-methyl thiophene) have been investigated in some detail. The capacitance-voltage plots for the devices suggest the presence of two acceptor states, one shallow and one deep. The total concentration of acceptor states, 10 24-10 26 m -3 depending on the degree of undoping, agrees well with estimates from the reverse I-V characteristics assuming image force lowering of the interfacial potential barrier.
Resumo:
Deep Level Transient Spectroscopy (DLTS) has been used to investigate hole traps in the depletion region of Schottky barrier diodes formed from electropolymerised poly(3-methylthiophene). The capacitance transients appear to be composed of a fast and a slow component. Analysis of the slower component using the ''rate window'' technique yields isochronal differential capacitance curves that depend on temperature in the manner predicted by theory.
Resumo:
Both the DC and AC admittance of Schottky barrier diodes formed at the interface of aluminium and poly(3-methyl thiophene) have been investigated in some detail. The capacitance-voltage plots for the devices suggest the presence of two acceptor states, one shallow and one deep. The total concentration of acceptor states, 10 24-10 26 m -3 depending on the degree of undoping, agrees well with estimates from the reverse I-V characteristics assuming image force lowering of the interfacial potential barrier.
Resumo:
The infrared (IR) spectroscopic data for a series of eleven heteroleptic bis(phthalocyaninato) rare earth complexes MIII(Pc)[Pc(α-OC5H11)4] (M = Sm–Lu, Y) [H2Pc = unsubstituted phthalocyanine, H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected with 2 cm−1 resolution. Raman spectroscopic properties in the range of 500–1800 cm−1 for these double-decker molecules have also been comparatively studied using laser excitation sources emitting at 632.8 and 785 nm. Both the IR and Raman spectra for M(Pc)[Pc(α-OC5H11)4] are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds, namely C4. For this series, the IR Pc√− marker band appears as an intense absorption at 1309–1317 cm−1, attributed to the pyrrole stretching. With laser excitation at 632.8 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. In contrast, when excited with laser radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane deformations between 500 and 1000 cm−1 for M(Pc)[Pc(α-OC5H11)4] intensify to become the strongest scatterings. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series. The assignments of the vibrational bands for these compounds have been made and discussed in relation to other unsubstituted and substituted bis(phthalocyaninato) rare earth analogues, such as M(Pc)2 and M(OOPc)2 [H2OOPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine].