953 resultados para Accelerated environmental aging. Central hole. Fracture mechanics. Mechanical properties. Residual properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of copper nanowire with different crystallographic orientations, under tensile deformation. Three different crystallographic orientations have been considered. The deformation mechanism has been carefully discussed. It is found that the Young’s modulus is insensitive to the defect, even when the nanowire’s crystallographic orientation is different. However, due to the defect’s effect, the yield strength and yield strain appear a large decrease. The defects have played a role of dislocation sources, the slips or stacking faults are first generated around the locations of the defects. The necking locations have also been affected by different defects. Due to the surface defect, the plastic deformation has received a large influence for the <001>/{110} and <110> orientated nanowires, and a relative small influence is seen for the <111> nanowire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties have an important role in the fire safety design of cold-formed steel structures due to the rapid reduction in mechanical properties such as yield strength and elastic modulus under fire conditions and associated reduction to the load carrying capacities. Hence there is a need to fully understand the deterioration characteristics of yield strength and elastic modulus of cold-formed steels at elevated temperatures. Although past research has produced useful experimental data on the mechanical properties of cold-formed steels at elevated temperatures, such data do not yet cover different cold-formed steel grades and thicknesses. Therefore, an experimental study was undertaken to investigate the elevated temperature mechanical properties of two low and high strength steels with two thicknesses that are commonly used in Australia. Tensile coupon tests were undertaken using a steady state test method for temperatures in the range 20–700 °C. Test results were compared with the currently available reduction factors for yield strength and elastic modulus, and stress–strain curves, based on which further improvements were made. For this purpose, test results of many other cold-formed steels were also used based on other similar studies undertaken at the Queensland University of Technology. Improved equations were developed to predict the yield strength and elastic modulus reduction factors and stress–strain curves of a range of cold-formed steel grades and thicknesses used in Australia. This paper presents the results of this experimental study, comparisons with the results of past research and steel design standards, and the new predictive equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of single-crystal copper nanowire with different surface defects, under torsion deformation. The torsional rigidity is found insensitive to the surface defects and the critical angle appears an obvious decrease due to the surface defects, the largest decrease is found for the nanowire with surface horizon defect. The deformation mechanism appears different degrees of influence due to surface defects. The surface defects play a role of dislocation sources. Comparing with single intrinsic stacking faults formation for the perfect nanowire, much affluent deformation processes have been activated because of surface defects, for instance, we find the twins formation for the nanowire with a surface 45o defect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the molecular dynamics (MD) method, the single-crystalline copper nanowire with different surface defects is investigated through tension simulation. For comparison, the MD tension simulations of perfect nanowire are firstly carried out under different temperatures, strain rates, and sizes. It has concluded that the surface-volume ratio significantly affects the mechanical properties of nanowire. The surface defects on nanowires are then systematically studied in considering different defect orientation and distribution. It is found that the Young’s modulus is insensitive of surface defects. However, the yield strength and yield point show a significant decrease due to the different defects. Different defects are observed to serve as a dislocation source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical vibration properties of single actin filaments from 50 to 288 nm are investigated by the molecular dynamics simulation in this study. The natural frequencies obtained from the molecular simulations agree with those obtained from the analytical solution of the equivalent Euler–Bernoulli beam model. Through the convergence study of the mechanical properties with respect to the filament length, it was found that the Euler–Bernoulli beam model can only be reliably used when the single actin filament is of the order of hundreds of nanometre scale. This molecular investigation not only provides the evidence for the use of the continuum beam model in characterising the mechanical properties of single actin filaments, but also clarifies the criteria for the effective use of the Euler–Bernoulli beam model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to calculate mechanical properties of tough skinned vegetables as a part of Finite Element Modelling (FEM) and simulation of tissue damage during mechanical peeling of tough skinned vegetables. Design/methodology: There are some previous studies on mechanical properties of fruits and vegetables however, behaviour of tissue under different processing operations will be different. In this study indentation test was performed on Peel, Flesh and Unpeeled samples of pumpkin as a tough skinned vegetable. Additionally, the test performed in three different loading rates for peel: 1.25, 10, 20 mm/min and 20 mm/min for flesh and unpeeled samples respectively. The spherical end indenter with 8mm diameter used for the experimental tests. Samples prepare from defect free and ripped pumpkin purchased from local shops in Brisbane, Australia. Humidity and temperature were 20-55% and 20-250C respectively. Findings: Consequently, force deformation and stress and strain of samples were calculated and shown in presented figures. Relative contribution (%) of skin to different mechanical properties is computed and compared with data available from literature. According the results, peel samples had the highest value of rupture force (291N) and as well as highest value of firmness (1411Nm-1). Research limitations/implications: The proposed study focused on one type of tough skinned vegetables and one variety of pumpkin however, more tests will give better understandings of behaviours of tissue. Additionally, the behaviours of peel, unpeeled and flesh samples in different speed of loading will provide more details of tissue damages during mechanical loading. Originality/value: Mechanical properties of pumpkin tissue calculated using the results of indentation test, specifically the behaviours of peel, flesh and unpeeled samples were explored which is a new approach in Finite Element Modelling (FEM) of food processes. Keywords: Finite Element Modelling (FEM), relative contribution, firmness, toughness and rupture force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many continuum mechanical models have been developed such as liquid drop models, solid models, and so on for single living cell biomechanics studies. However, these models do not give a fully approach to exhibit a clear understanding of the behaviour of single living cells such as swelling behaviour, drag effect, etc. Hence, the porohyperelastic (PHE) model which can capture those aspects would be a good candidature to study cells behaviour (e.g. chondrocytes in this study). In this research, an FEM model of single chondrocyte cell will be developed by using this PHE model to simulate Atomic Force Microscopy (AFM) experimental results with the variation of strain rate. This material model will be compared with viscoelastic model to demonstrate the advantages of PHE model. The results have shown that the maximum value of force applied of PHE model is lower at lower strain rates. This is because the mobile fluid does not have enough time to exude in case of very high strain rate and also due to the lower permeability of the membrane than that of the protoplasm of chondrocyte. This behavior is barely observed in viscoelastic model. Thus, PHE model is the better model for cell biomechanics studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Understanding the mechanical properties of tendon is an important step to guiding the process of improving athletic performance, predicting injury and treating tendinopathies. The speed of sound in a medium is governed by the bulk modulus and density for fluids and isotropic materials. However, for tendon,which is a structural composite of fluid and collagen, there is some anisotropy requiring an adjustment for Poisson’s ratio. In this paper, these relationships are explored and modelled using data collected, in vivo, on human Achilles tendon. Estimates for elastic modulus and hysteresis based on speed of sound data are then compared against published values from in vitro mechanical tests. Methods: Measurements using clinical ultrasound imaging, inverse dynamics and acoustic transmission techniques were used to determine dimensions, loading conditions and longitudinal speed of sound for the Achilles tendon during a series of isometric plantar flexion exercises against body weight. Upper and lower bounds for speed of sound versus tensile stress in the tendon were then modelled and estimates derived for elastic modulus and hysteresis. Results: Axial speed of sound varied between 1850 to 2090 m.s−1 with a non-linear, asymptotic dependency on the level of tensile stress in the tendon 5–35 MPa. Estimates derived for the elastic modulus ranged between 1–2 GPa. Hysteresis derived from models of the stress-strain relationship, ranged from 3–11%. These values agree closely with those previously reported from direct measurements obtained via in vitro mechanical tensile tests on major weight bearing tendons. Discussion: There is sufficiently good agreement between these indirect (speed of sound derived) and direct (mechanical tensile test derived) measures of tendon mechanical properties to validate the use of this non-invasive acoustic transmission technique. This non-invasive method is suitable for monitoring changes in tendon properties as predictors of athletic performance, injury or therapeutic progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The byssus threads of the common mussel, Mytilus edulis L., have been tested mechanically and the results from the tests related to the ecology of the animal. The threads are mechanically similar to other crystalline polymers such as polyethylene having a modulus of about 108N m−2 and a long relaxation time. Resilience of 60% is similar to tendon; ultimate strain is about five times that of tendon at 0.44. The thread is laid down with a prestrain of 10% and so guys the mussel in position. Calculation shows that a mussel with 50 byssus threads would be able to resist all but severe winter storms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is motivated by the need to efficiently machine the edges of ophthalmic polymer lenses for mounting in spectacle or instrument frames. The polymer materials used are required to have suitable optical characteristics such high refractive index and Abbe number, combined with low density and high scratch and impact resistance. Edge surface finish is an important aesthetic consideration; its quality is governed by the material removal operation and the physical properties of the material being processed. The wear behaviour of polymer materials is not as straightforward as for other materials due to their molecular and structural complexity, not to mention their time-dependent properties. Four commercial ophthalmic polymers have been studied in this work using nanoindentation techniques which are evaluated as tools for probing surface mechanical properties in order to better understand the grinding response of polymer materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by the wonderful properties of some biological composites in nature, we performed molecular dynamics simulations to investigate the mechanical behavior of bicontinuous nanocomposites. Three representative types of bicontinuous composites, which have regular network, random network, and nacre inspired microstructures respectively, were studied and the results were compared with those of a honeycomb nanocomposite with only one continuous phase. It was found that the mechanical strength of nanocomposites in a given direction strongly depends on the connectivity of microstructure in that direction. Directional isotropy in mechanical strength and easy manufacturability favor the random network nanocomposites as a potentially great bioinspired composite with balanced performances. In addition, the tensile strength of random network nanocomposites is less sensitive to the interfacial failure, owing to its super high interface-to-volume ratio and random distribution of internal interfaces. The results provide a useful guideline for design and optimization of advanced nanocomposites with superior mechanical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.