933 resultados para Abdullah Bosnevî---1644


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer nanocomposites offer the potential of enhanced properties such as increased modulus and barrier properties to the end user. Much work has been carried out on the effects of extrusion conditions on melt processed nanocomposites but very little research has been conducted on the use of polymer nanocomposites in semi-solid forming processes such as thermoforming and injection blow molding. These processes are used to make much of today’s packaging, and any improvements in performance such as possible lightweighting due to increased modulus would bring signi?cant bene?ts both economically and environmentally. The work described here looks at the biaxial deformation of polypropylene–clay nanocomposites under industrial forming conditions in order to determine if the presence of clay affects processability, structure and mechanical properties of the stretched material. Melt compounded polypropylene/clay composites in sheet form were biaxially stretched at a variety of processing conditions to examine the effect of high temperature, high strain and high strain rate processing on sheet structure
and properties.

A biaxial test rig was used to carry out the testing which imposed conditions on the sheet that are representative of those applied in injection blow molding and thermoforming. Results show that the presence of clay increases the yield stress relative to the un?lled material at typical processing temperatures and that the sensitivity of the yield stress to temperature is greater for the ?lled material. The stretching process is found to have a signi?cant effect on the delamination and alignment of clay particles (as observed by TEM) and on yield stress and elongation at break of the stretched sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Throughout Earth's history there have been temporal and spatial variations in the amount of visible and ultraviolet radiation received by ecosystems. This paper examines if temporal changes in these forms of energy receipt could have influenced the tempo and mode of plant diversity and speciation, focusing in particular upon Cenozoic time-scales. Evidence for changing patterns of plant diversity and speciation apparent in various fossil records and molecular phylogenies are considered alongside calculated changes in thermal and solar ultraviolet energy (specifically UV-B) over the past 50 Myr. We suggest that changes in thermal energy influx (amount and variability) affected the tempo of evolution through its influence upon community dynamics (e.g. population size, diversity, turnover, extinctions). It was not only the amount of thermal energy but also variability in its flux that may have influenced these processes, and ultimately the rate of diversification. We suggest that variations in UV-B would have influenced the mode and tempo of speciation through changes to genome stability during intervals of elevated UV-B. We argue, therefore, that although variability in thermal energy and UV-B fluxes through time may lead to the same end-point (changing the rate of diversification), the processes responsible are very different and both need to be considered when linking evolutionary processes to energy flux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Infection of the mouse central nervous system with wild type (WT) and vaccine strains of measles virus (MV) results in lack of clinical signs and limited antigen detection. It is considered that cell entry receptors for these viruses are not present on murine neural cells and infection is restricted at cell entry.

Methods: To examine this hypothesis, virus antigen and caspase 3 expression (for apoptosis) was compared in primary mixed, neural cell cultures infected in vitro or prepared from mice infected intracerebrally with WT, vaccine or rodent neuroadapted viruses. Viral RNA levels were examined in mouse brain by nested and real-time reverse transcriptase polymerase chain reaction.

Results: WT and vaccine strains were demonstrated for the first time to infect murine oligodendrocytes in addition to neurones despite a lack of the known MV cell receptors. Unexpectedly, the percentage of cells positive for viral antigen was higher for WT MV than neuroadapted virus in both in vitro and ex vivo cultures. In the latter the percentage of positive cells increased with time after mouse infection. Viral RNA (total and mRNA) was detected in brain for up to 20 days, while cultures were negative for caspase 3 in WT and vaccine virus infections.

Conclusions: WT and vaccine MV strains can use an endogenous cell entry receptor(s) or alternative virus uptake mechanism in murine neural cells. However, viral replication occurs at a low level and is associated with limited apoptosis. WT MV mouse infection may provide a model for the initial stages of persistent MV human central nervous system infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The university course timetabling problem involves assigning a given number of events into a limited number of timeslots and rooms under a given set of constraints; the objective is to satisfy the hard constraints (essential requirements) and minimize the violation of soft constraints (desirable requirements). In this study we employed a Dual-sequence Simulated Annealing (DSA) algorithm as an improvement algorithm. The Round Robin (RR) algorithm is used to control the selection of neighbourhood structures within DSA. The performance of our approach is tested over eleven benchmark datasets. Experimental results show that our approach is able to generate competitive results when compared with other state-of-the-art techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the development of a novel metaheuristic that combines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the University course timetabling problem. This well-known timetabling problem assigns lectures to specific numbers of timeslots and rooms maximizing the overall quality of the timetable while taking various constraints into account. EM is a population-based stochastic global optimization algorithm that is based on the theory of physics, simulating attraction and repulsion of sample points in moving toward optimality. GD is a local search procedure that allows worse solutions to be accepted based on some given upper boundary or ‘level’. In this paper, the dynamic force calculated from the attraction-repulsion mechanism is used as a decreasing rate to update the ‘level’ within the search process. The proposed method has been applied to a range of benchmark university course timetabling test problems from the literature. Moreover, the viability of the method has been tested by comparing its results with other reported results from the literature, demonstrating that the method is able to produce improved solutions to those currently published. We believe this is due to the combination of both approaches and the ability of the resultant algorithm to converge all solutions at every search process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotational molding is a process used to manufacture hollow plastic products, and has been heralded as a molding method with great potential. Reduction of cycle times is an important issue for the rotational molding industry, addressing a significant disadvantage of the process. Previous attempts to reduce cycle times have addressed surface enhanced molds, internal pressure, internal cooling, water spray cooling, and higher oven air flow rates within the existing process. This article explores the potential benefits of these cycle time reduction techniques, and combinations of them. Recommendations on a best practice combination are made, based on experimental observations and resulting product quality. Applying the proposed molding conditions (i.e., a combination of surface-enhanced molds, higher oven flow rates, internal mold pressure, and water spray cooling), cycle time reductions of up to 70% were achieved. Such savings are very significant, inviting the rotomolding community to incorporate these techniques efficiently in an industrial setting. POLYM. ENG. SCI., 49:1846-1854, 2009. (C) 2009 Society of Plastics Engineers