914 resultados para ATRIAL-NATRIURETIC-PEPTIDE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Renal insufficiency is one of the most common co-morbidities present in heart failure (HF) patients. It has significant impact on mortality and adverse outcomes. Cystatin C has been shown as a promising marker of renal function. A systematic review of all the published studies evaluating the prognostic role of cystatin C in both acute and chronic HF was undertaken. A comprehensive literature search was conducted involving various terms of 'cystatin C' and 'heart failure' in Pubmed medline and Embase libraries using Scopus database. A total of twelve observational studies were selected in this review for detailed assessment. Six studies were performed in acute HF patients and six were performed in chronic HF patients. Cystatin C was used as a continuous variable, as quartiles/tertiles or as a categorical variable in these studies. Different mortality endpoints were reported in these studies. All twelve studies demonstrated a significant association of cystatin C with mortality. This association was found to be independent of other baseline risk factors that are known to impact HF outcomes. In both acute and chronic HF, cystatin C was not only a strong predictor of outcomes but also a better prognostic marker than creatinine and estimated glomerular filtration rate (eGFR). A combination of cystatin C with other biomarkers such as N terminal pro B- type natriuretic peptide (NT-proBNP) or creatinine also improved the risk stratification. The plausible mechanisms are renal dysfunction, inflammation or a direct effect of cystatin C on ventricular remodeling. Either alone or in combination, cystatin C is a better, accurate and a reliable biomarker for HF prognosis. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased cardiovascular mortality occurs in diabetic patients with or without coronary artery disease and is attributed to the presence of diabetic cardiomyopathy. One potential mechanism is hyperglycemia that has been reported to activate protein kinase C (PKC), preferentially the β isoform, which has been associated with the development of micro- and macrovascular pathologies in diabetes mellitus. To establish that the activation of the PKCβ isoform can cause cardiac dysfunctions, we have established lines of transgenic mice with the specific overexpression of PKCβ2 isoform in the myocardium. These mice overexpressed the PKCβ2 isoform transgene by 2- to 10-fold as measured by mRNA, and proteins exhibited left ventricular hypertrophy, cardiac myocyte necrosis, multifocal fibrosis, and decreased left ventricular performance without vascular lesions. The severity of the phenotypes exhibited gene dose-dependence. Up-regulation of mRNAs for fetal type myosin heavy chain, atrial natriuretic factor, c-fos, transforming growth factor, and collagens was also observed. Moreover, treatment with a PKCβ-specific inhibitor resulted in functional and histological improvement. These findings have firmly established that the activation of the PKCβ2 isoform can cause specific cardiac cellular and functional changes leading to cardiomyopathy of diabetic or nondiabetic etiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The signal transducer and activator of transcription (STAT) 3, a transcriptional factor downstream of several cytokines, is activated by Janus kinase families and plays a pivotal role in cardiac hypertrophy through gp130. To determine the physiological significance of STAT3 in vivo, transgenic mice with cardiac-specific overexpression of the Stat3 gene (STAT3-TG) were generated. STAT3-TG manifested myocardial hypertrophy at 12 wk of age with increased expression of the atrial natriuretic factor (ANF), β-myosin heavy chain (MHC), and cardiotrophin (CT)-1 genes. The animals were injected i.p. with 15 mg/kg doxorubicin (Dox), an antineoplastic drug with restricted use because of its cardiotoxicity. The survival rates after 10 days were 25% (5/20) for control littermates (WT), but 80% (16/20) for STAT3-TG (P < 0.01). WT showed increased expression of β-MHC and ANF mRNAs in the hearts 1 day after Dox treatment; this expression peaked at 3 days, suggesting that the WT suffered from congestive heart failure. Although the expression of these mRNAs was elevated in STAT3-TG hearts before Dox treatment, no additional increase was observed after the treatment. Dox administration significantly reduced the expression of the cardiac α-actin and Stat3 genes in WT hearts but not in STAT3-TG. These results provide direct evidence that STAT3 transduces not only a hypertrophic signal but also a protective signal against Dox-induced cardiomyopathy by inhibiting reduction of cardiac contractile genes and inducing cardiac protective factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transgenic overexpression of Gαq in the heart triggers events leading to a phenotype of eccentric hypertrophy, depressed ventricular function, marked expression of hypertrophy-associated genes, and depressed β-adrenergic receptor (βAR) function. The role of βAR dysfunction in the development of this failure phenotype was delineated by transgenic coexpression of the carboxyl terminus of the βAR kinase (βARK), which acts to inhibit the kinase, or concomitant overexpression of the β2AR at low (≈30-fold, Gαq/β2ARL), moderate (≈140-fold, Gαq/β2ARM), and high (≈1,000-fold, Gαq/β2ARH) levels above background βAR density. Expression of the βARK inhibitor had no effect on the phenotype, consistent with the lack of increased βARK levels in Gαq mice. In marked contrast, Gαq/β2ARL mice displayed rescue of hypertrophy and resting ventricular function and decreased cardiac expression of atrial natriuretic factor and α-skeletal actin mRNA. These effects occurred in the absence of any improvement in basal or agonist-stimulated adenylyl cyclase (AC) activities in crude cardiac membranes, although restoration of a compartmentalized β2AR/AC signal cannot be excluded. Higher expression of receptors in Gαq/β2ARM mice resulted in salvage of AC activity, but hypertrophy, ventricular function, and expression of fetal genes were unaffected or worsened. With ≈1,000-fold overexpression, the majority of Gαq/β2ARH mice died with cardiomegaly at 5 weeks. Thus, although it appears that excessive, uncontrolled, or generalized augmentation of βAR signaling is deleterious in heart failure, selective enhancement by overexpressing the β2AR subtype to limited levels restores not only ventricular function but also reverses cardiac hypertrophy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To investigate the dynamics of guanosine 3′,5′-cyclic monophosphate (cGMP) in single living cells, we constructed genetically encoded, fluorescent cGMP indicators by bracketing cGMP-dependent protein kinase (cGPK), minus residues 1–77, between cyan and yellow mutants of green fluorescent protein. cGMP decreased fluorescence resonance energy transfer (FRET) and increased the ratio of cyan to yellow emissions by up to 1.5-fold with apparent dissociation constants of ≈2 μM and >100:1 selectivity for cGMP over cAMP. To eliminate constitutive kinase activity, Thr516 of cGPK was mutated to Ala. Emission ratio imaging of the indicators transfected into rat fetal lung fibroblast (RFL)-6 showed cGMP transients resulting from activation of soluble and particulate guanylyl cyclase, respectively, by nitric oxide (NO) and C-type natriuretic peptide (CNP). Whereas all naive cells tested responded to CNP, only 68% responded to NO. Both sets of signals showed large and variable (0.5–4 min) latencies. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) did not elevate cGMP on its own but consistently amplified responses to NO or CNP, suggesting that basal activity of guanylate cyclase is very low and emphasizing the importance of PDEs in cGMP recycling. A fraction of RFL cells showed slowly propagating tides of cGMP spreading across the cell in response to delocalized application of NO. Biolistically transfected Purkinje neurons showed cGMP responses to parallel fiber activity and NO donors, confirming that single-cell increases in cGMP occur under conditions appropriate to cause synaptic plasticity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transcription factor NF-κB regulates expression of genes that are involved in inflammation, immune response, viral infection, cell survival, and division. However, the role of NF-κB in hypertrophic growth of terminally differentiated cardiomyocytes is unknown. Here we report that NF-κB activation is required for hypertrophic growth of cardiomyocytes. In cultured rat primary neonatal ventricular cardiomyocytes, the nuclear translocation of NF-κB and its transcriptional activity were stimulated by several hypertrophic agonists, including phenylephrine, endothelin-1, and angiotensin II. The activation of NF-κB was inhibited by expression of a “supersuppressor” IκBα mutant that is resistant to stimulation-induced degradation and a dominant negative IκB kinase (IKKβ) mutant that can no longer be activated by phosphorylation. Furthermore, treatment with phenylephrine induced IκBα degradation in an IKK-dependent manner, suggesting that NF-κB is a downstream target of the hypertrophic agonists. Importantly, expression of the supersuppressor IκBα mutant or the dominant negative IKKβ mutant blocked the hypertrophic agonist-induced expression of the embryonic gene atrial natriuretic factor and enlargement of cardiomyocytes. Conversely, overexpression of NF-κB itself induced atrial natriuretic factor expression and cardiomyocyte enlargement. These findings suggest that NF-κB plays a critical role in the hypertrophic growth of cardiomyocytes and may serve as a potential target for the intervention of heart disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The L-arginine:nitric oxide (NO) pathway is believed to exert many of its physiological effects via stimulation of the soluble guanylyl cyclase (SGC); however, the lack of a selective inhibitor of this enzyme has prevented conclusive demonstration of this mechanism of action. We have found that the compound 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) inhibits the elevation of cGMP induced by the NO donor S-nitroso-DL-penicillamine in human platelets and rat vascular smooth muscle (IC50 = 10-60 nM and <10 nM, respectively) and that this is accompanied by prevention of the platelet inhibitory and vasodilator actions of NO donors. ODQ also inhibited the antiaggregatory action of NO generated by the platelets but did not affect the action of prostacyclin or that of a cGMP mimetic. In addition, ODQ inhibited the vasodilator actions of endogenously released NO and of NO generated after induction of NO synthase in vascular preparations. It did not, however, affect the increase in vascular smooth muscle cGMP or the dilatation induced by atrial natriuretic factor. ODQ had no effect on NO synthase activity, nor did it react with NO. It did, however, potently (IC50 approximately 10 nM) inhibit the activity of the SGC in cytosol obtained from crude extract of rat aortic smooth muscle. Thus ODQ prevents the actions of NO on platelets and vascular smooth muscle through its potent inhibitory effect on the SGC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Utilizing an in vitro model system of cardiac muscle cell hypertrophy, we have identified a retinoic acid (RA)-mediated pathway that suppresses the acquisition of specific features of the hypertrophic phenotype after exposure to the alpha-adrenergic receptor agonist phenylephrine. RA at physiological concentrations suppresses the increase in cell size and induction of a genetic marker for hypertrophy, the atrial natriuretic factor (ANF) gene. RA also suppresses endothelin 1 pathways for cardiac muscle cell hypertrophy, but it does not affect the increase in cell size and ANF expression induced by serum stimulation. A trans-activation analysis using a transient transfection assay reveals that neonatal rat ventricular myocardial cells express functional RA receptors of both the retinoic acid receptor and retinoid X receptor (RAR and RXR) subtypes. Using synthetic agonists of RA, which selectively bind to RXR or RAR, our data indicate that RAR/RXR heterodimers mediate suppression of alpha-adrenergic receptor-dependent hypertrophy. These results suggest the possibility that a pathway for suppression of hypertrophy may exist in vivo, which may have potential therapeutic value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sildenafil, an inhibitor of the cGMP-degrading phosphodiesterase 5 that is used to treat erectile dysfunction, has been linked to an increased risk of melanoma. Here, we have examined the potential connection between cGMP-dependent signaling cascades and melanoma growth. Using a combination of biochemical assays and real-time monitoring of melanoma cells, we report a cGMP-dependent growth-promoting pathway in murine and human melanoma cells. We document that C-type natriuretic peptide (CNP), a ligand of the membrane-bound guanylate cyclase B, enhances the activity of cGMP-dependent protein kinase I (cGKI) in melanoma cells by increasing the intracellular levels of cGMP. Activation of this cGMP pathway promotes melanoma cell growth and migration in a p44/42 MAPK-dependent manner. Sildenafil treatment further increases intracellular cGMP concentrations, potentiating activation of this pathway. Collectively, our data identify this cGMP-cGKI pathway as the link between sildenafil usage and increased melanoma risk.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM To assess whether the established cardiovascular biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP) provides prognostic information in patients with out-of-hospital cardiac arrest due to ventricular tachycardia or fibrillation (OHCA-VT/VF). METHODS We measured NT-proBNP levels in 155 patients with OHCA-VT/VF enrolled into a prospective multicenter observational study in 21 ICUs in Finland. Blood samples were drawn <6h of OHCA-VT/VF and later after 24h, 48h, and 96h. The end-points were mortality and neurological outcome classified according to Cerebral Performance Category (CPC) after one year. NT-proBNP levels were compared to high-sensitivity troponin T (hs-TnT) levels and established risk scores. RESULTS NT-proBNP levels were higher in non-survivors compared to survivors on study inclusion (median 1003 [quartile (Q) 1-3 502-2457] vs. 527 [179-1284]ng/L, p=0.001) and after 24h (1913 [1012-4573] vs. 1080 [519-2210]ng/L, p<0.001). NT-proBNP levels increased from baseline to 96h after ICU admission (p<0.001). NT-proBNP levels were significantly correlated to hs-TnT levels after 24h (rho=0.27, p=0.001), but not to hs-TnT levels on study inclusion (rho=0.05, p=0.67). NT-proBNP levels at all time points were associated with clinical outcome, but only NT-proBNP levels after 24h predicted mortality and poor neurological outcome, defined as CPC 3-5, in models that adjusted for SAPS II and SOFA scores. hs-TnT levels did not add prognostic information to NT-proBNP measurements alone. CONCLUSION NT-proBNP levels at 24h improved risk assessment for poor outcome after one year on top of established risk indices, while hs-TnT measurements did not further add to risk prediction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES Secretoneurin is produced in neuroendocrine cells, and the myocardium and circulating secretoneurin levels provide incremental prognostic information to established risk indices in cardiovascular disease. As myocardial dysfunction contributes to poor outcome in critically ill patients, we wanted to assess the prognostic value of secretoneurin in two cohorts of critically ill patients with infections. DESIGN Two prospective, observational studies. SETTING Twenty-four and twenty-five ICUs in Finland. PATIENTS A total of 232 patients with severe sepsis (cohort #1) and 94 patients with infections and respiratory failure (cohort #2). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We measured secretoneurin levels by radioimmunoassay in samples obtained early after ICU admission and compared secretoneurin with other risk indices. In patients with severe sepsis, admission secretoneurin levels (logarithmically transformed) were associated with hospital mortality (odds ratio, 3.17 [95% CI, 1.12-9.00]; p = 0.030) and shock during the hospitalization (odds ratio, 2.17 [1.06-4.46]; p = 0.034) in analyses that adjusted for other risk factors available on ICU admission. Adding secretoneurin levels to age, which was also associated with hospital mortality in the multivariate model, improved the risk prediction as assessed by the category-free net reclassification index: 0.35 (95% CI, 0.06-0.64) (p = 0.02). In contrast, N-terminal pro-B-type natriuretic peptide levels were not associated with mortality in the multivariate model that included secretoneurin measurements, and N-terminal pro-B-type natriuretic peptide did not improve patient classification on top of age. Secretoneurin levels were also associated with hospital mortality after adjusting for other risk factors and improved patient classification in cohort #2. In both cohorts, the optimal cutoff for secretoneurin levels at ICU admission to predict hospital mortality was ≈ 175 pmol/L, and higher levels were associated with mortality also when adjusting for Simplified Acute Physiology Score II and Sequential Organ Failure Assessment scores. CONCLUSIONS Secretoneurin levels provide incremental information to established risk indices for the prediction of mortality and shock in critically ill patients with severe infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human urotensin-II (hU-II) is processed from its prohormone (ProhU-II) at putative cleavage sites for furin and serine proteases such as trypsin. Although proteolysis is required for biological activity, the endogenous urotensin-converting enzyme (UCE) has not been investigated. The aim of this study was to investigate UCE activity in cultured human cells and in blood, comparing activity with that of furin and trypsin. In a cell-free system, hU-II was detected by high-performance liquid chromatography-mass spectrometry after coincubating 10 muM carboxyl terminal fragment (CTF)-ProhU-II with recombinant furin (2 U/ml, 3 h, 37degreesC) at pH 7.0 and pH 8.5, but not at pH 5.0, or when the incubating medium was depleted of Ca2+ ions and supplemented with 2 mM EDTA at pH 7.0. hU-II was readily detected in the superperfusate of permeabilized epicardial mesothelial cells incubated with CTF-ProhU-II (3 h, 37degreesC), but it was only weakly detected in the superperfusate of intact cells. Conversion of CTF-ProhU-II to hU-II was attenuated in permeabilized cells using conditions found to inhibit furin activity. In a cell-free system, trypsin (0.05 mg/ml) cleaved CTF-ProhU-II to hU-II, and this was inhibited with 35 muM aprotinin. hU-II was detected in blood samples incubated with CTF-ProhU-II (3 h, 37degreesC), and this was also inhibited with aprotinin. The findings revealed an intracellular UCE in human epicardial mesothelial cells with furin-like activity. Aprotinin-sensitive UCE activity was detected in blood, suggesting that an endogenous serine protease such as trypsin may also contribute to proteolysis of hU-II prohormone, if the prohormone is secreted into the circulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Australian terrestrial elapid snakes contain amongst the most potently toxic venoms known. However, despite the well-documented clinical effects of snake bite, little research has focussed on individual venom components at the molecular level. To further characterise the components of Australian elapid venoms, a complementary (cDNA) microarray was produced from the venom gland of the coastal taipan (Oxyuranus scutellatus) and subsequently screened for venom gland-specific transcripts. A number of putative toxin genes were identified, including neurotoxins, phospholipases, a pseudechetoxin-like gene, a venom natriuretic peptide and a nerve growth factor together with other genes involved in cellular maintenance. Venom gland-specific components also included a calglandulin-like protein implicated in the secretion of toxins from the gland into the venom. These toxin transcripts were subsequently identified in seven other related snake species, producing a detailed comparative analysis at the cDNA and protein levels. This study represents the most detailed description to date of the cloning and characterisation of different genes associated with envenomation from Australian snakes.