963 resultados para ATOM
Resumo:
We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO(•) through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO(•) yield for different NP sizes at constant NP concentration and initial photon energy is also presented.
Resumo:
The scenario of "electron-capture and -loss" was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.
Resumo:
We investigate electron dynamics in the hydrogen atom and the hydrogen molecular ion when exposed to long wavelength laser pulses yet having intensity insufficient to ionize the system. We find that the field is still able to drive the electron, leading to time-dependent interference effects.
Resumo:
Time-dependent close-coupling (TDCC), R-matrix-with-pseudostates (RMPS), and time-independent distorted-wave (TIDW) methods are used to calculate electron-impact ionization cross sections for the carbon atom. The TDCC and RMPS results for the 1s22s22p2 ground configuration are in reasonable agreement with the available experimental measurements, while the TIDW results are 30% higher. Ionization of the 1s22s2p3 excited configuration is performed using the TDCC, RMPS, and TIDW methods. Ionization of the 1s22s22p3l (l=0–2) excited configurations is performed using the TDCC and TIDW methods. The ionization cross sections for the excited configurations are much larger than for the ground state. For example, the peak cross section for the 1s22s22p3p excited configuration is an order of magnitude larger than the peak cross section for the 1s22s22p2 ground configuration. The TDCC results are again found to be substantially lower than the TIDW results. The ionization cross-section results will permit the generation of more accurate, generalized collisional-radiative ionization coefficients needed for modeling moderately dense carbon plasmas.
Resumo:
Accurate knowledge of the electron-impact ionization of the B atom is urgently needed in current fusion plasma experiments to help design ITER wall components. Since no atomic measurements exist, nonperturba- tive time-dependent close-coupling (TDCC) calculations are carried out to accurately determine the direct ionization cross sections of the outer two subshells of B. Perturbative distorted-wave and semiempirical binary encounter calculations are found to yield cross sections from 26% lower to an order of magnitude higher than the current TDCC results. Unlike almost all neutral atoms, large excitation-autoionization contributions are found for the B atom. Nonperturbative R matrix with pseudostates (RMPS) calculations are also carried out to accurately determine the total ionization cross section of B. Previous 60 LS-term RMPS calculations are found to yield cross sections up to 40% higher than the current more extensive 476 LS-term RMPS results
Resumo:
Charge changing processes of MeV ions penetrating through liquid spray is confirmed to be abundant source of various energetic negative ion and neutral atom beams its generic nature is demonstrated.
Resumo:
J Biol Inorg Chem. 2008 Jun;13(5):737-53. doi: 10.1007/s00775-008-0359-6
Resumo:
By employing the embedded-atom potentials of Mei et ai.[l], we have calculated the dynamical matrices and phonon dispersion curves for six fee metals (Cu,Ag,Au,Ni,Pd and Pt). We have also investigated, within the quasiharmonic approximation, some other thermal properties of these metals which depend on the phonon density of states, such as the temperature dependence of lattice constant, coefficient of linear thermal expansion, isothermal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure, Griineisen parameter and Debye temperature. The computed results are compared with the experimental findings wherever possible. The comparison shows a generally good agreement between the theoretical values and experimental data for all properties except the discrepancies of phonon frequencies and Debye temperature for Pd, Pt and Au. Further, we modify the parameters of this model for Pd and Pt and obtain the phonon dispersion curves which is in good agreement with experimental data.
Resumo:
The objective of this thesis was to demonstrate the potential of fast atom bombardment mass spectrometry (FABMS) as a probe of condensed phase systems and its possible uses for the study of hydrogen bonding. FABMS was used to study three different systems. The first study was aimed at investigating the selectivity of the ligand tris(3,6-dioxaheptyl) amine (tdoha) for the alkali metal cations. FABMS results correlated well with infrared and nmr data. Systems where a crown ether competed with tdoha for a given alkali metal cation were also investigated by fast atom bombardment. The results were found to correlate with the cation affinity of tdoha and the ability of the crown ether to bind the cation. In the second and third studies, H-bonded systems were investigated. The imidazole-electron donor complexes were investigated and FABMS results showed the expected H-bond strength of the respective complexes. The effects of concentration, liquid matrix, water content, deuterium exchange, and pre-ionization of the complex were also investigated. In the third system investigated, the abundance of the diphenyl sulfone-ammonium salt complexes (presumably H-bonded) in the FABMS spectrum were found to correlate with qualitative considerations such as steric hindrance and strength of ion pairs.
Resumo:
The fragmentation patterns and mass spectra of some phenyl tin and -lead halide adducts with hexamethylphosphoramide are compared by subjecting them t~ electron impact and fast atom bombardment ionization in a mass spectrometer. This comparison is restricted to the metal-containing ions. Ligand-exchange mechanisms of some of the metal-containing species are explored by FAB-MS. Several moisturesensitive organo-metallics and H-bonded systems have been examined by FAB for attempted characterization, but without any success. Scavenging and trapping of water molecules by complex aggregates in solutions of quaternary ammonium fluorides and hydroxides are investigated by FAB to complement previous NMR-studies.
Resumo:
Both El MS and FAB MS behavior of two groups of compounds, aryltin and ferrocene compounds, have been studied. For the aryltin compounds, the effect of substituent group position, substituent group type and ligand type on the El spectra have been explored in the El MS studies. The fragmentation mechanism has been investigated under El with linked scans, such as fragment ion scans(BJE), parent ion scans(B2JE) and constant neutral radical loss scans(B2(1-E)JE2). In the FAB MS studies, matrix optimization experiments have been carried out. The positive ion FAB MS studies focused on the effect of substituent group position, substituent group type and ligand type on the spectra. The fragmentation mechanisms of all the samples under positive ion FAB have been studied by means of the linked scans. The CA positive ion FAB fragmentation studies were also carried out for a typical sample. Negative ion FAB experiments of all the compounds have been done. And finally, the comparison of the El MS and FAB MS has been made. For ferrocenes, the studies concentrated on the fragmentation mechanism of each compound under El with linked scan techniques in the first field-free region and the applicability of positive/negative ion FAB MS to this group of compounds. The fragmentation mechanisms under positive ion FAB of those ferrocenes which can give positive ion FAB MS spectra were studied with the linked scan techniques. The CA +ve F AB fragmentation studies were carried out for a typical sample. Comparison of the E1 MS and FAB MS has been made.
Resumo:
A number of metal complexes containing the ligand 5,5,7,12,12,14-hexamethyl-l,4,8,11-tetra-azatetradecane were synthesized and analyzed using electron impact (EI) and fast atom bombardment (FAB). The FAB mass spectra were obtained in positive and negative ion mode. FAB in the positive ion mode proved to be the most successful technique for the identification of these compounds. In the majority of cases the spectra obtained using positive ion FAB were structurally informative, although not all showed molecular (M+) or quasimolecular ([M+H]+) ions. The fragmentations observed were characteristic of the ligands, and were interpreted based on the chemistry of these compounds.
Resumo:
In order to investigate the use of Fast Atom Bombardment Mass Spectrometry (FAB-MS) as a tool for structural characterization, two groups of complexes are analyzed. The first group is a set of ruthenium(II) coordination complexes containing bidentate polypyridyl ligands. The positive and negative ion FAB-MS spectra are found to be sufficient to allow for an almost complete characterization of the central metal atom, the ligands and the counter anions contained in the intact complex. An unusual observation of mUltiply charged ions in the positive ion FAB-MS spectra (i.e. [RUL 3 ]2+) is explained to be as a result of the oxidative quenching of the excited state of the doubly charged ion by the matrix, 3-nitrobenzyl alcohol. An analysis of a mixture shows that the technique is a good one for identifying components therein. A group of triptycene and related complexes containing Group V elements is also analyzed by FAB-MS and the results. in terms of relative abundances of fragment ions, are found to be consistent with known metal-carbon bond strengths.
Resumo:
This thesis can be broken down into two sections. Section one is a study . of the ionization mechanisms and the ion source optimization for Fast Atom Bombardment (FAB) ionization. For this study, several specially designed probe tips were created and tested under various experimental conditions. The aIm of this section is to understand the operating characteristics of a FAB IOn source better. The second section involves the study of several Vitamin B6 Schiff Base complexes using both positive and negative ion FAB MS. This section is an exploration of the usefulness of FAB MS as a structure probe for the metalcoordination complexes of Vitamin B6.