994 resultados para ASME
Resumo:
In this paper, we integrate two or more compliant mechanisms to get enhanced functionality for manipulating and mechanically characterizing the grasped objects of varied size (cm to sub-mm), stiffness (1e5 to 10 N/m), and materials (cement to biological cells). The concepts of spring-lever (SL) model, stiffness maps, and non-dimensional kinetoelastostatic maps are used to design composite and multi-scale compliant mechanisms. Composite compliant mechanisms comprise two or more different mechanisms within a single elastic continuum while multi-scale ones possess the additional feature of substantial difference in the sizes of the mechanisms that are combined into one. We present three applications: (i) a composite compliant device to measure the failure load of the cement samples; (ii) a composite multi-scale compliant gripper to measure the bulk stiffness of zebrafish embryos; and (iii) a compliant gripper combined with a negative-stiffness element to reduce the overall stiffness. The prototypes of all three devices are made and tested. The cement sample needed a breaking force of 22.5 N; the zebrafish embryo is found to have bulk stiffness of about 10 N/m; and the stiffness of a compliant gripper was reduced by 99.8 % to 0.2 N/m.
Resumo:
How do we assess the capability of a compliant mechanism of given topology and shape? The kinetoelastostatic maps proposed in this paper help answer this question. These maps are drawn in 2D using two non-dimensional quantities, one capturing the nonlinear static response and the other the geometry, material, and applied forces. Geometrically nonlinear finite element analysis is used to create the maps for compliant mechanisms consisting of slender beams. In addition to the topology and shape, the overall proportions and the proportions of the cross-sections of the beam segments are kept fixed for a map. The finite region of the map is parameterized using a non-dimensional quantity defined as the slenderness ratio. The shape and size of the map and the parameterized curves inside it indicate the complete kinetoelastostatic capability of the corresponding compliant mechanism of given topology, shape, and fixed proportions. Static responses considered in this paper include input/output displacement, geometric amplification, mechanical advantage, maximum stress, etc. The maps can be used to compare mechanisms, to choose a suitable mechanism for an application, or re-design as may be needed. The usefulness of the non-dimensional maps is presented with multiple applications of different variety. Non-dimensional portrayal of snap-through mechanisms is one such example. The effect of the shape of the cross-section of the beam segments and the role of different segments in the mechanism as well as extension to 3D compliant mechanisms, the cases of multiple inputs and outputs, and moment loads are also explained. The effects of disproportionate changes on the maps are also analyzed.
Resumo:
Phase change heat transfer in porous media finds applications in various geological flows and modern heat pipes. We present a study to show the effect of phase change on heat transfer in a porous channel. We show that the ratio of Jakob numbers based on wall superheat and inlet fluid subcooling governs the liquid-vapor interface location in the porous channel and below a critical value of the ratio, the liquid penetrates all the way to the extent of the channel in the flow direction. In such cases, the Nusselt number is higher due to the proximity of the liquid-vapor interface to the heat loads. For higher heat loads or lower subcooling of the liquid, the liquid-vapor interface is pushed toward the inlet, and heat transfer occurs through a wider vapor region thus resulting in a lower Nusselt number. This study is relevant in the designing of efficient two-phase heat exchangers such as capillary suction based heat pipes where a prior estimation of the interface location for the maximum heat load is required to ensure that the liquid-vapor interface is always inside the porous block for its operation.
Resumo:
We report the diffusion characteristics of water vapor through two different porous media, viz., membrane electrode assembly (MEA) and gas diffusion layer (GDL) in a nonoperational fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) was employed for measuring water vapor concentration in the test channel. Effects of the membrane pore size and the inlet humidity on the water vapor transport are quantified through mass flux and diffusion coefficient. Water vapor transport rate is found to be higher for GDL than for MEA. The flexibility and wide range of application of TDLAS in a fuel cell setup is demonstrated through experiments with a stagnant flow field on the dry side.
Resumo:
Experimental analyses of surface oscillations are reported in acoustically levitated, radiatively heated bicomponent droplets with one volatile and other being nonvolatile. Two instability pathways are observed: one being acoustically driven observed in low-vapor pressure fluid droplets and other being boiling driven observed in high-vapor pressure fluid droplets. The first pathway shows extreme droplets deformation and subsequent breakup by acoustic pressure and externally supplied heat. Also transition of instabilities from acoustically activated shape distortion regime to thermally induced boiling regime is observed with increasing concentration of volatile component in bicomponent droplets. Precursor phases of instabilities are investigated using Legendre's polynomial.
Resumo:
The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.
Resumo:
In this work, we address the issue of modeling squeeze film damping in nontrivial geometries that are not amenable to analytical solutions. The design and analysis of microelectromechanical systems (MEMS) resonators, especially those that use platelike two-dimensional structures, require structural dynamic response over the entire range of frequencies of interest. This response calculation typically involves the analysis of squeeze film effects and acoustic radiation losses. The acoustic analysis of vibrating plates is a very well understood problem that is routinely carried out using the equivalent electrical circuits that employ lumped parameters (LP) for acoustic impedance. Here, we present a method to use the same circuit with the same elements to account for the squeeze film effects as well by establishing an equivalence between the parameters of the two domains through a rescaled equivalent relationship between the acoustic impedance and the squeeze film impedance. Our analysis is based on a simple observation that the squeeze film impedance rescaled by a factor of jx, where x is the frequency of oscillation, qualitatively mimics the acoustic impedance over a large frequency range. We present a method to curvefit the numerically simulated stiffness and damping coefficients which are obtained using finite element analysis (FEA) analysis. A significant advantage of the proposed method is that it is applicable to any trivial/nontrivial geometry. It requires very limited finite element method (FEM) runs within the frequency range of interest, hence reducing the computational cost, yet modeling the behavior in the entire range accurately. We demonstrate the method using one trivial and one nontrivial geometry.
Resumo:
This paper deals with the study of the nonlinear dynamics of a rotating flexible link modeled as a one dimensional beam, undergoing large deformation and with geometric nonlinearities. The partial differential equation of motion is discretized using a finite element approach to yield four nonlinear, nonautonomous and coupled ordinary differential equations (ODEs). The equations are nondimensionalized using two characteristic velocities-the speed of sound in the material and a velocity associated with the transverse bending vibration of the beam. The method of multiple scales is used to perform a detailed study of the system. A set of four autonomous equations of the first-order are derived considering primary resonances of the external excitation and one-to-one internal resonances between the natural frequencies of the equations. Numerical simulations show that for certain ranges of values of these characteristic velocities, the slow flow equations can exhibit chaotic motions. The numerical simulations and the results are related to a rotating wind turbine blade and the approach can be used for the study of the nonlinear dynamics of a single link flexible manipulator.
Resumo:
This paper reports the time-mean and phase-locked response of nonreacting as well as reacting flow field in a coaxial swirling jet/flame (nonpremixed). Two distinct swirl intensities plus two different central pipe flow rates at each swirl setting are investigated. The maximum response is observed at the 105 Hz mode in the range of excitation frequencies (0-315 Hz). The flow/flame exhibited minimal response beyond 300 Hz. It is seen that the aspect ratio change of inner recirculation zone (IRZ) under nonreacting conditions (at responsive modes) manifests as a corresponding increase in the time-mean flame aspect ratio. This is corroborated by similar to 25% decrease in the IRZ transverse width in both flame and cold flow states. In addition, 105 Hz excited states are found to shed high energy regions (eddies) asymmetrically when compared to dormant 315 Hz pulsing frequency. The kinetic energy (KE) of the flow field is subsequently reduced due to acoustic excitation and a corresponding increase (similar to O (1)) in fluctuation intensity is witnessed. The lower swirl intensity case is found to be more responsive than the high swirl case as in the former flow state the resistance offered by IRZ to incoming acoustic perturbations is lower due to inherently low inertia. Next, the phase-locked analysis of flow and flame structure is employed to further investigate the phase dependence of flow/flame response. It is found that the asymmetric shifting of IRZ mainly results at 270 deg acoustic forcing. The 90 deg phase angle forcing is observed to convect the IRZ farther downstream in both swirl cases as compared to other phase angles. The present work aims primarily at providing a fluid dynamic view point to the observed nonpremixed flame response without considering the confinement effects.
Resumo:
In this paper, we try to establish the equivalence or similarity in the thermal and physiochemical changes in precursor droplets (cerium nitrate) in convective and radiative fields. The radiative field is created through careful heating of the droplet using a monochromatic light source (CO2 laser). The equivalence is also established for different modes of convection like droplet injected into a high-speed flow and droplet experiencing a convective flow due to acoustic streaming (levitated) only. The thermophysical changes are studied in an aqueous cerium nitrate droplet, and the dissociation of cerium nitrate to ceria is modeled using modified Kramers' reaction rate formulation. It is observed that vaporization, species accumulation, and chemical characteristics obtained in a convectively heated droplet are retained in a radiatively heated droplet by careful adjustment of the laser intensity. The timescales and ceria yield match reasonably well for both the cases. It is also noted that similar conclusions are drawn in both levitated droplet and a nonlevitated droplet.
Resumo:
This paper reports numerical investigation concerning the interaction of a laminar methane-air counterflow diffusion flame with monodisperse and polydisperse water spray. Commercial code ANSYS FLUENT with reduced chemistry has been used for investigation. Effects of strain rate, Sauter mean diameter (SMD), and droplet size distribution on the temperature along stagnation streamline have been studied. Flame extinction using polydisperse water spray has also been explored. Comparison of monodisperse and polydisperse droplet distribution on flame properties reveals suitability of polydisperse spray in flame temperature reduction beyond a particular SMD. This study also provides a numerical framework to study flame-spray interaction and extinction.
Resumo:
The ability to quantify leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. Variety of labyrinth seal configurations (number of teeth, stepped or straight, honeycomb cell size) are in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. This paper describes the development of a numerical methodology aimed at studying the effect of honeycomb lands on leakage and windage heating. Specifically, a three-dimensional computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-epsilon turbulence model with modified Schmidt number. The modified turbulence model is benchmarked and fine-tuned based on several experiments. Using this model, a broad parametric study is conducted by varying honeycomb cell size, pressure ratio (PR), and radial clearance for a four-tooth straight-through labyrinth seal. The results show good agreement with available experimental data. They further indicate that larger honeycomb cells predict higher seal leakage and windage heating at tighter clearances compared to smaller honeycomb cells and smooth lands. However, at open seal clearances larger honeycomb cells have lower leakage compared to smaller honeycomb cells.
Resumo:
This paper evaluates cost and performance tradeoffs of alternative supercritical carbon dioxide (s-CO2) closed-loop Brayton cycle configurations with a concentrated solar heat source. Alternative s-CO2 power cycle configurations include simple, recompression, cascaded, and partial cooling cycles. Results show that the simple closed-loop Brayton cycle yielded the lowest power-block component costs while allowing variable temperature differentials across the s-CO2 heating source, depending on the level of recuperation. Lower temperature differentials led to higher sensible storage costs, but cycle configurations with lower temperature differentials (higher recuperation) yielded higher cycle efficiencies and lower solar collector and receiver costs. The cycles with higher efficiencies (simple recuperated, recompression, and partial cooling) yielded the lowest overall solar and power-block component costs for a prescribed power output.
Resumo:
This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig 2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.
Resumo:
Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (similar to 50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by similar to 200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input similar to 2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of similar to 85%.