919 resultados para ANIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process for making aluminosilicates of zeolite N structure comprising the steps of: (i) combining a water soluble monovalent cation, a solution of hydroxyl anions and an aluminosilicate to form a resultant mixture having a pH greater than 10 and a H.sub.2O/Al.sub.2O.sub.3 ratio in the range 30 to 220; (ii) heating the resultant mixture to a temperature of between 50.degree. C. and boiling point of the mixture for a time between 1 minute and 100 hours until a crystalline product of zeolite N structure is formed as determined by X-ray diffraction or other suitable characteristic; and (iii) separating the zeolite N product as a solid from the mixture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process for the preparation of a modified kaolin from a kaolin group mineral which includes expansion and contraction of layers of the kaolin group mineral. The layers comprising one Si-tetrahedral sheet and one Al-octahedral sheet. The expansion and contraction may be initiated by initial intercalation of a reagent which can penetrate kaolin layers to reach an interlayer region there between to form an intercalate. Subsequently, the intercalation may be followed by de-intercalation which involves the removal of the reagent. By the above process, there is provided crystalline modified kaolins having the following properties: (i) an increased interlayer space compared to corresponding kaolin group minerals; (ii) an increased susceptibility to intercalation by cations, anions or salts compared to corresponding kaolin group minerals; and (iii) an increased exfoliated morphology compared to corresponding kaolin group minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Papagoite is a silicate mineral named after an American Indian tribe and was used as a healing mineral. Papagoite CaCuAlSi2O6(OH)3 is a hydroxy mixed anion compound with both silicate and hydroxyl anions in the formula. The structural characterization of the mineral papagoite remains incomplete. Papagoite is a four-membered ring silicate with Cu2+ in square planar coordination. The intense sharp Raman band at 1053 cm−1 is assigned to the ν1 (A 1g) symmetric stretching vibration of the SiO4 units. The splitting of the ν3 vibrational mode offers support to the concept that the SiO4 tetrahedron in papagoite is strongly distorted. A very intense Raman band observed at 630 cm−1 with a shoulder at 644 cm−1 is assigned to the ν4 vibrational modes. Intense Raman bands at 419 and 460 cm−1 are attributed to the ν2 bending modes. Intense Raman bands at 3545 and 3573 cm−1 are assigned to the stretching vibrations of the OH units. Low-intensity Raman bands at 3368 and 3453 cm−1 are assigned to water stretching modes. It is suggested that the formula of papagoite is more likely to be CaCuAlSi2O6(OH)3 · xH2O. Hence, vibrational spectroscopy has been used to characterize the molecular structure of papagoite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermogravimetric analysis (TG) and powder X-ray diffraction (PXRD) were used to study some selected Mg/Al and Zn/Al layered double hydroxides (LDHs) prepared by co-precipitation. A Mg/Al hydrotalcite was investigated before and after reformation in fluoride and nitrate solutions. Little change in the TG or PXRD patterns was observed. It was proposed that successful intercalation of nitrate anions has occurred. However, the absence of any change in the d(003) interlayer spacing suggests that fluoride anions were not intercalated between the LDH layers. Any fluoride anions that were removed from solution are most likely adsorbed onto the outer surfaces of the hydrotalcite. As fluoride removal was not quantified it is not possible to confirm that this has happened without further experimentation. Carbonate is probably intercalated into the interlayer of these hydrotalcites, as well as fluoride or nitrate. The carbonate most likely originates from either incomplete decarbonation during thermal activation or adsorption from the atmosphere or dissolved in the deionised water. Small and large scale co-precipitation syntheses of a Zn/Al LDH were also investigated to determine if there was any change in the product. While the small scale experiment produced a good quality LDH of reasonable purity; the large scale synthesis resulted in several additional phases. Imprecise measurement and difficulty in handling the large quantities of reagents appeared to be sufficient to alter the reaction conditions causing a mixture of phases to be formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared spectra are reported of methyl formate and formaldehyde adsorbed at 300 K on silica, Cu/SiO2 reduced in hydrogen and Cu/SiO2 which had been oxidised by exposure to nitrous oxide after reduction. Silanol groups on silica form hydrogen bonds with carbonyl groups in weakly adsorbed methyl formate molecules. Methyl formate ligates via its carbonyl groups to Cu atoms in the surface of reduced copper. A low residual concentration of surface oxygen on copper promoted the slow reaction of ligated methyl formate to give a bridging formate species on copper and adsorbed methoxy groups. Methyl formate did not ligate to an oxidised copper surface but was rapidly chemisorbed to give unidentate formate and methoxy species. Formaldehyde slowly polymerises on silica to form trioxane and other oxymethylene species. The reaction is faster over Cu/SiO2 which, in the reduced state, also catalyses the formation of bridging formate anions adsorbed on copper. The reaction between formaldehyde and oxidised Cu/SiO2 leads to both unidentate and bidentate formate and adsorbed water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The body of the thesis contained two separate elements which made an original contribution to fundamental understanding in the areas of photocatalysis, chemical synthesis and water treatment. Research on chemical reactions catalyzed by noble metal nanoparticles (such as gold) or surface complex grafted metal oxides which can be driven by sunlight at ambient temperature and the second element on radioactive cesium (137Cs+) cations and iodine (125I-) anions recovery by the unique structural features of titanate nanostructures for firmly capture and safe storage; the works has been all published in journals that are rated at the top of their respective fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a combination of scanning electron microscopy with EDX and vibrational spectroscopy to study the mineral ardennite-(As). The mineral ardennite-(As) of accepted formula Mn2þ 4 (Al,Mg)6(Si3O10)(SiO4)2(AsO4,VO4)(OH)6 is a silicate mineral which may contain arsenate and/or vanadates anions. Because of the oxyanions present, the mineral lends itself to analysis by Raman and infrared spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by Si, Mn, Al and As. Ca and V were also observed in partial substitution for Mn and As. Raman bands at 1197, 1225, 1287 and 1394 cm-1 are assigned to SiO stretching vibrations. The strong Raman bands at 779 and 877 cm-1 are assigned to the AsO3- 4 antisymmetric and symmetric stretching vibrations. The Raman band at 352 cm-1 is assigned to the m2 symmetric bending vibration. The series of Raman bands between 414 and 471 cm-1 are assigned to the m4 out of plane bending modes of the AsO3-4 units. Intense Raman bands observed at 301 and 314 cm-1 are attributed to the MnO stretching and bending vibrations. Raman bands at 3041, 3149, 3211 and 3298 cm-1 are attributed to the stretching vibrations of OH units. There is vibrational spectroscopic evidence for the presence of water adsorbed on the ardennite-(As) surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The molecular structure of gartrellite is assessed. Gartrellite is one of the tsumcorite mineral group based upon arsenate and/or sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with two water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the mineral gartrellite enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO3/4 anion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TCNQ·− radical anions (TCNQ = 7,7,8,8,-tetracyanoquinodimethane) form a wide range of semiconducting coordination polymers when coordinated to transition metals. Some such as CuTCNQ and AgTCNQ exhibit molecular switching and memory storage properties; others have intriguing magnetic properties and for example may behave as molecular magnets at low temperature. In this review, the electro- and photo-chemical synthesis and characterization of this important class of material is reviewed. In particular, the electrochemistry and the redox properties of TCNQ derivatives of coordination polymers based on Cu, Ag, Mn, Fe, Co, Ni, Zn and Cd transition metals are surveyed, with an emphasis on the mechanistic aspects of their electrochemical formation via nucleation–growth processes. Given that TCNQ is an extremely good electron acceptor, readily forming TCNQ•− and TCNQ2-, electrochemical reduction of TCNQ in the presence of a transition metal ion provides an ideal method for synthesis of metal-TCNQ materials by electrocrystallization from organic solvents and ionic liquids or solid-solid transformation using TCNQ modified electrodes from aqueous media containing transition metal electrolytes. The significance of the reversible formal potential (E0f) in these studies is discussed. The coupling of electrocrystallisation on electrode surfaces and microscopic characterization of the electrodeposited materials reveals a wide range of morphologies and phases which strongly influence their properties and applications. Since TCNQ also can be photo-reduced in the presence of suitable electron donors, analogous photochemical approaches to the synthesis of TCNQ-transition metal derivatives are available. The advantages of electrochemical and photochemical methods of synthesis relative to chemical synthesis are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most radicals the singly occupied molecular orbital (SOMO) is the highest-energy occupied molecular orbital (HOMO); however, in a small number of reported compounds this is not the case. In the present work we expand significantly the scope of this phenomenon, known as SOMO-HOMO energy-level conversion, by showing that it occurs in virtually any distonic radical anion that contains a sufficiently stabilized radical (aminoxyl, peroxyl, aminyl) non-pi-conjugated with a negative charge (carboxylate, phosphate, sulfate). Moreover, regular orbital order is restored on protonation of the anionic fragment, and hence the orbital configuration can be switched by pH. Most importantly, our theoretical and experimental results reveal a dramatically higher radical stability and proton acidity of such distonic radical anions. Changing radical stability by 3-4 orders of magnitude using pH-induced orbital conversion opens a variety of attractive industrial applications, including pH-switchable nitroxide-mediated polymerization, and it might be exploited in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.