932 resultados para AI-5 generation
Resumo:
The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.
Resumo:
The effect of simulated hyperglycaemia on bovine retinal pericytes was studied following culture of these cells for 10 days under normal (5 mmol/l) and elevated (25 mmol/l) glucose conditions in the absence of endothelial cells. Pericytes cultured under high ambient glucose exhibited both a delayed and reduced contractile response following stimulation with endothelin-1. Stimulation with 10(-7) mol/l endothelin-1 for 30 s caused significant contraction in cells grown in both 5 mmol/l and 25 mmol/l glucose. The former also contracted significantly with 10(-8) mol/l endothelin-1. Further, at all concentrations tested, statistical comparison of the time course of contraction showed a significant difference (p 0.1) between bovine retinal pericytes grown for 10 days under normo- or hyperglycaemic conditions, it became apparent that the altered contractility in bovine retinal pericytes following culture in high glucose must be due to post-binding intracellular disturbance(s). Indeed, both basal and 15 s post-stimulation with 10(-8) mol/l endothelin-1, levels of inositol trisphosphate were significantly reduced (p
Resumo:
Liquid ethanol (C2H5OH) was used to generate a spray of sub-micron droplets. Sprays with different nozzle geometries have been tested and characterised using Mie scattering to find scaling properties and to generate droplets with different diameters within the spray. Nozzles having throat diameters of 470 µm and 560 µm showed generation of ethanol spray with droplet diameters of (180 ± 10) nm and (140 ± 10) nm, respectively. These investigations were motivated by the observation of copious negative ions from these target systems, e.g., negative oxygen and carbon ions measured from water and ethanol sprays irradiated with ultra-intense (5 × 1019 W/cm2), ultra short (40 fs) laser pulses. It is shown that the droplet diameter and the average atomic density of the spray have a significant effect on the numbers and energies of accelerated ions, both positive and negative. These targets open new possibilities for the creation of efficient and compact sources of different negative ion species.
Resumo:
Proton bursts with a narrow spectrum at an energy of (2.8 +/- 0.3 MeV) are accelerated from sub-micron water spray droplets irradiated by high-intensity (similar to 5 x 10(19)W/cm(2)), high-contrast (similar to 10(10)), ultra-short (40 fs) laser pulses. The acceleration is preferentially in the laser propagation direction. The explosion dynamics is governed by a residual ps-scale laser pulse pedestal which "mildly" preheats the droplet and changes its density profile before the arrival of the high intensity laser pulse peak. As a result, the energetic electrons extracted from the modified target by the high-intensity part of the laser pulse establish an anisotropic electrostatic field which results in anisotropic Coulomb explosion and proton acceleration predominantly in the forward direction. Hydrodynamic simulations of the target pre-expansion and 3D particle-in-cell simulations of the measured energy and anisotropy of the proton emission have confirmed the proposed acceleration scenario. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731712]
Resumo:
We have developed the capability to determine accurate harmonic spectra for multielectron atoms within time-dependent R-matrix (TDRM) theory. Harmonic spectra can be calculated using the expectation value of the dipole length, velocity, or acceleration operator. We assess the calculation of the harmonic spectrum from He irradiated by 390-nm laser light with intensities up to 4 x 10(14) W cm(-2) using each form, including the influence of the multielectron basis used in the TDRM code. The spectra are consistent between the different forms, although the dipole acceleration calculation breaks down at lower harmonics. The results obtained from TDRM theory are compared with results from the HELIUM code, finding good quantitative agreement between the methods. We find that bases which include pseudostates give the best comparison with the HELIUM code, but models comprising only physical orbitals also produce accurate results.
Resumo:
We apply time-dependent R-matrix theory to investigate harmonic generation from ground-state Ar+ with M = 0 at a wavelength of 390 nm. Contributions associated with the different 3s(2)3p(4) ionization thresholds are assessed, including the interference between these. The dominant contribution originates from the second ionization threshold, 3s(2)3p(4 1)D. Changes to the harmonic yields arising from the higher 3s3p(5) thresholds are also assessed. We further confirm that Ar+ has a higher harmonic yield than He for the same laser pulse, despite having a higher ionization threshold.
Resumo:
The study details the development of a fully validated, rapid and portable sensor based method for the on-site analysis of microcystins in freshwater samples. The process employs a novel lysis method for the mechanical lysis of cyanobacterial cells, with glass beads and a handheld frother in only 10min. The assay utilises an innovative planar waveguide device that, via an evanescent wave excites fluorescent probes, for amplification of signal in a competitive immunoassay, using an anti-microcystin monoclonal with cross-reactivity against the most common, and toxic variants. Validation of the assay showed the limit of detection (LOD) to be 0.78ngmL and the CCß to be 1ngmL. Robustness of the assay was demonstrated by intra- and inter-assay testing. Intra-assay analysis had % C.V.s between 8 and 26% and recoveries between 73 and 101%, with inter-assay analysis demonstrating % C.V.s between 5 and 14% and recoveries between 78 and 91%. Comparison with LC-MS/MS showed a high correlation (R=0.9954) between the calculated concentrations of 5 different Microcystis aeruginosa cultures for total microcystin content. Total microcystin content was ascertained by the individual measurement of free and cell-bound microcystins. Free microcystins can be measured to 1ngmL, and with a 10-fold concentration step in the intracellular microcystin protocol (which brings the sample within the range of the calibration curve), intracellular pools may be determined to 0.1ngmL. This allows the determination of microcystins at and below the World Health Organisation (WHO) guideline value of 1µgL. This sensor represents a major advancement in portable analysis capabilities and has the potential for numerous other applications.
Resumo:
Policy-based management is considered an effective approach to address the challenges of resource management in large complex networks. Within the IU-ATC QoS Frameworks project, a policy-based network management framework, CNQF (Converged Networks QoS Framework) is being developed aimed at providing context-aware, end-to-end QoS control and resource management in converged next generation networks. CNQF is designed to provide homogeneous, transparent QoS control over heterogeneous access technologies by means of distributed functional entities that co-ordinate the resources of the transport network through policy-driven decisions. In this paper, we present a measurement-based evaluation of policy-driven QoS management based on CNQF architecture, with real traffic flows on an experimental testbed. A Java based implementation of the CNQF Resource Management Subsystem is deployed on the testbed and results of the experiments validate the framework operation for policy-based QoS management of real traffic flows.
Resumo:
Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.
Resumo:
A new generation of water soluble tetrazolium salts have recently become available and in this study we compared a colorimetric assay developed using one of these salts, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8), with a previously developed 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay to determine which agent is most suitable for use as a colorimetric indicator in susceptibility testing. The MICs of 6 antibiotics were determined for 33 staphylococci using both colorimetric assays and compared with those obtained using the British Society for Antimicrobial Chemotherapy reference broth microdilution method. Absolute categorical agreement between the reference and test methods ranged from 79% (cefuroxime) to 100% (vancomycin) for both assays. No minor or major errors occurred using either assay with very major errors ranging from zero (vancomycin) to seven (cefuroxime). Analysis of the distribution of differences in the log2 dilution MIC results revealed overall agreement, within the accuracy limits of the standard test (± 1 log2 dilution), using the XTT and WST-8 assays of 98% and 88%, respectively. Further studies on 31 ESBL-producing isolates were performed using the XTT method with absolute categorical agreement ranging from 87% (nitrofurantoin) to 100% (ofloxacin and meropenem). No errors were noted for either ofloxacin or meropenem with overall agreement of 91%. The data suggests that XTT is more reliable and accurate than WST-8 for use in a rapid antimicrobial susceptibility test.
Resumo:
The first generation of femtocells is evolving to the next generation with many more capabilities in terms of better utilisation of radio resources and support of high data rates. It is thus logical to conjecture that with these abilities and their inherent suitability for home environment, they stand out as an ideal enabler for delivery of high efficiency multimedia services. This paper presents a comprehensive vision towards this objective and extends the concept of femtocells from indoor to outdoor environments, and strongly couples femtocells to emergency and safety services. It also presents and identifies relevant issues and challenges that have to be overcome in realization of this vision.
Resumo:
Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.
Resumo:
In recent years, the embracement of smart devices carried or worn by people have transformed how society interact with one another. This trend has also been observed in the advancement of vehicular networks. Here, developments in wireless technologies for vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications are leading to a new generation of vehicular networks. A natural extension of both types of networks will be their eventual wireless integration. Both people and vehicles will undoubtedly form integral parts of future mobile networks of people and things. Central to this will be the person-to-vehicle (P2V) communications channel. As the P2V channel will be subject to different signal propagation characteristics than either type of communication system considered in isolation, it is imperative the characteristics of the wireless channel must first be fully understood. To the best of the author's knowledge, this is a topic which has not yet been addressed in the open literature. In this paper we will present our most recent research on the statistical characterization of the 5.8 GHz person-to-vehicle channel in an urban environment.
Resumo:
In this paper, we propose a design paradigm for energy efficient and variation-aware operation of next-generation multicore heterogeneous platforms. The main idea behind the proposed approach lies on the observation that not all operations are equally important in shaping the output quality of various applications and of the overall system. Based on such an observation, we suggest that all levels of the software design stack, including the programming model, compiler, operating system (OS) and run-time system should identify the critical tasks and ensure correct operation of such tasks by assigning them to dynamically adjusted reliable cores/units. Specifically, based on error rates and operating conditions identified by a sense-and-adapt (SeA) unit, the OS selects and sets the right mode of operation of the overall system. The run-time system identifies the critical/less-critical tasks based on special directives and schedules them to the appropriate units that are dynamically adjusted for highly-accurate/approximate operation by tuning their voltage/frequency. Units that execute less significant operations can operate at voltages less than what is required for correct operation and consume less power, if required, since such tasks do not need to be always exact as opposed to the critical ones. Such scheme can lead to energy efficient and reliable operation, while reducing the design cost and overheads of conventional circuit/micro-architecture level techniques.