952 resultados para ADULT RESPIRATORY DISTRESS SYNDROME
Resumo:
The objective was to analyze the outcome following prenatal exposure to angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor antagonists (ARBs). For this purpose, a systematic review of published case reports and case series dealing with intrauterine exposure to ACE-Is or to ARBs using Medline as the source of data was performed. The publications retained for analysis included patients who were described individually, revealing, at minimum, the gestational age, substance used, period of medication intake, and the outcome. In total, 72 reports were included; 37 articles (118 well-documented cases) described the prenatal exposure to ACE-Is; and 35 articles (68 cases) described the prenatal exposure to ARBs. Overall, 52% of the newborns exposed to ACE-Is and 13% of the newborns exposed to ARBs did not exhibit any complications (P<0.0001). Neonatal complications were more frequent following exposure to ARBs and included renal failure, oligohydramnios, death, arterial hypotension, intrauterine growth retardation, respiratory distress syndrome, pulmonary hypoplasia, hypocalvaria, limb defects, persistent patent ductus arteriosus, or cerebral complications. The long-term outcome is described as positive in only 50% of the exposed children. Fetopathy caused by exposure to ACE-Is or ARBs has relevant neonatal and long-term complications. The outcome is poorer following exposure to ARBs. We propose the term "fetal renin-angiotensin system blockade syndrome" to describe the related clinical findings. Thirty years after the first description of ACE-I fetopathy, relevant complications are, at present, regularly described, indicating that the awareness of the deleterious effect of prenatal exposure to drugs inhibiting the renin-angiotensin system should be improved.
Resumo:
RATIONALE: ABCA3 mutations are known to cause fatal surfactant deficiency. OBJECTIVE: We studied ABCA3 protein expression in full-term newborns with unexplained respiratory distress syndrome (URDS) as well as the relevance of ABCA3 mutations for surfactant homeostasis. METHODS: Lung tissue of infants with URDS was analyzed for the expression of ABCA3 in type II pneumocytes. Coding exons of the ABCA3 gene were sequenced. Surfactant protein expression was studied by immunohistochemistry, immunoelectron microscopy, and Western blotting. RESULTS: ABCA3 protein expression was found to be greatly reduced or absent in 10 of 14 infants with URDS. Direct sequencing revealed distinct ABCA3 mutations clustering within vulnerable domains of the ABCA3 protein. A strong expression of precursors of surfactant protein B (pro-SP-B) but only low levels and aggregates of mature surfactant protein B (SP-B) within electron-dense bodies in type II pneumocytes were found. Within the matrix of electron-dense bodies, we detected precursors of SP-C (pro-SP-C) and cathepsin D. SP-A was localized in small intracellular vesicles, but not in electron-dense bodies. SP-A and pro-SP-B were shown to accumulate in the intraalveolar space, whereas mature SP-B and SP-C were reduced or absent, respectively. CONCLUSION: Our data provide evidence that ABCA3 mutations are associated not only with a deficiency of ABCA3 but also with an abnormal processing and routing of SP-B and SP-C, leading to severe alterations of surfactant homeostasis and respiratory distress syndrome. To identify infants with hereditary ABCA3 deficiency, we suggest a combined diagnostic approach including immunohistochemical, ultrastructural, and mutation analysis.
Resumo:
Pulmonary capillary pressure (Pcap) is the predominant force that drives fluid out of the pulmonary capillaries into the interstitium. Increasing hydrostatic capillary pressure is directly proportional to the lung's transvascular filtration rate, and in the extreme leads to pulmonary edema. In the pulmonary circulation, blood flow arises from the transpulmonary pressure gradient, defined as the difference between pulmonary artery (diastolic) pressure and left atrial pressure. The resistance across the pulmonary vasculature consists of arterial and venous components, which interact with the capacitance of the compliant pulmonary capillaries. In pathological states such as acute respiratory distress syndrome, sepsis, and high altitude or neurogenic lung edema, the longitudinal distribution of the precapillary arterial and the postcapillary venous resistance varies. Subsequently, the relationship between Pcap and pulmonary artery occlusion pressure (PAOP) is greatly variable and Pcap can no longer be predicted from PAOP. In clinical practice, PAOP is commonly used to guide fluid therapy, and Pcap as a hemodynamic target is rarely assessed. This approach is potentially misleading. In the presence of a normal PAOP and an increased pressure gradient between Pcap and PAOP, the tendency for fluid leakage in the capillaries and subsequent edema development may substantially be underestimated. Tho-roughly validated methods have been developed to assess Pcap in humans. At the bedside, measurement of Pcap can easily be determined by analyzing a pressure transient after an acute pulmonary artery occlusion with the balloon of a Swan-Ganz catheter.
Resumo:
BACKGROUND: Cyclic recruitment during mechanical ventilation contributes to ventilator associated lung injury. Two different pathomechanisms in acute respiratory distress syndrome (ARDS) are currently discussed: alveolar collapse vs persistent flooding of small airways and alveoli. We compare two different ARDS animal models by computed tomography (CT) to describe different recruitment and derecruitment mechanisms at different airway pressures: (i) lavage-ARDS, favouring alveolar collapse by surfactant depletion; and (ii) oleic acid ARDS, favouring alveolar flooding by capillary leakage. METHODS: In 12 pigs [25 (1) kg], ARDS was randomly induced, either by saline lung lavage or oleic acid (OA) injection, and 3 animals served as controls. A respiratory breathhold manoeuvre without spontaneous breathing at different continuous positive airway pressure (CPAP) was applied in random order (CPAP levels of 5, 10, 15, 30, 35 and 50 cm H(2)O) and spiral-CT scans of the total lung were acquired at each CPAP level (slice thickness=1 mm). In each spiral-CT the volume of total lung parenchyma, tissue, gas, non-aerated, well-aerated, poorly aerated, and over-aerated lung was calculated. RESULTS: In both ARDS models non-aerated lung volume decreased significantly from CPAP 5 to CPAP 50 [oleic acid lung injury (OAI): 346.9 (80.1) to 96.4 (48.8) ml, P<0.001; lavage-ARDS: 245 17.6) to 42.7 (4.8) ml, P<0.001]. In lavage-ARDS poorly aerated lung volume decreased at higher CPAP levels [232 (45.2) at CPAP 10 to 84 (19.4) ml at CPAP 50, P<0.001] whereas in OAI poorly aerated lung volume did not vary at different airway pressures. CONCLUSIONS: In both ARDS models well-aerated and non-aerated lung volume respond to different CPAP levels in a comparable fashion: Thus, a cyclical alveolar collapse seems to be part of the derecruitment process also in the OA-ARDS. In OA-ARDS, the increase in poorly aerated lung volume reflects the specific initial lesion, that is capillary leakage with interstitial and alveolar oedema.
Resumo:
Umbilical venous catheters allow rapid central access in neonates, but may be associated with various complications. We present a case of a newborn with pericardial effusion following umbilical venous catheterization. An extremely low birth weight infant was intubated for respiratory distress syndrome and had umbilical venous and arterial lines in place. Massive cardiomegaly was noted on the subsequent chest X-ray. Echocardiography revealed a large pericardial effusion without signs of tamponade. After removing the catheter, the effusion gradually resolved. While pericardial effusion is a well-known complication of percutaneous long central lines, only a few case reports have documented sudden cardiovascular compromise associated with umbilical venous catheters. Pericardial effusion may be asymptomatic and should be suspected in infants with central catheters and progressive cardiomegaly. The prompt removal of catheters and, if signs of cardiac tamponade are present, emergency pericardiocentesis may prove to be life-saving.
Resumo:
Various supportive and adjunctive therapies to conventional mechanical ventilation have been evaluated in patients with acute lung injury and acute respiratory distress syndrome (e.g. nitric oxide, prone position, surfactant, glucocorticoids). Although some investigations have shown promising improvements in oxygenation and physiological variables, large randomized trials of adjunctive and supportive therapies showed no impact on survival.
Resumo:
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute diffuse damage to the pulmonary parenchyma by a variety of local or systemic insults. Increased alveolar capillary membrane permeability was recognized as the common end organ injury and a central feature in all forms of ALI/ARDS. Although great strides have been made in understanding the pathogenesis of ALI/ARDS and in intensive care medicine, the treatment approach to ARDS is still relying on ventilatory and cardiovascular support based on the recognition of the clinical picture. In the course of evaluating novel treatment approaches to ARDS, 3 models of ALI induced in different species, i.e. the surfactant washout lavage model, the oleic acid intravenous injection model and the endotoxin injection model, were widely used. This review gives an overview of the pathological characteristics of these models from studies in pigs, dogs or sheep. We believe that a good morphological description of these models, both spatially and temporally, will help us gain a better understanding of the real pathophysiological picture and apply these models more accurately and liberally in evaluating novel treatment approaches to ARDS.
Resumo:
INTRODUCTION: Inhaled nitric oxide (INO) allows selective pulmonary vasodilation in acute respiratory distress syndrome and improves PaO2 by redistribution of pulmonary blood flow towards better ventilated parenchyma. One-third of patients are nonresponders to INO, however, and it is difficult to predict who will respond. The aim of the present study was to identify, within a panel of inflammatory mediators released during endotoxin-induced lung injury, specific mediators that are associated with a PaO2 response to INO. METHODS: After animal ethics committee approval, pigs were anesthetized and exposed to 2 hours of endotoxin infusion. Levels of cytokines, prostanoid, leucotriene and endothelin-1 (ET-1) were sampled prior to endotoxin exposure and hourly thereafter. All animals were exposed to 40 ppm INO: 28 animals were exposed at either 4 hours or 6 hours and a subgroup of nine animals was exposed both at 4 hours and 6 hours after onset of endotoxin infusion. RESULTS: Based on the response to INO, the animals were retrospectively placed into a responder group (increase in PaO2 > or = 20%) or a nonresponder group. All mediators increased with endotoxin infusion although no significant differences were seen between responders and nonresponders. There was a mean difference in ET-1, however, with lower levels in the nonresponder group than in the responder group, 0.1 pg/ml versus 3.0 pg/ml. Moreover, five animals in the group exposed twice to INO switched from responder to nonresponder and had decreased ET-1 levels (3.0 (2.5 to 7.5) pg/ml versus 0.1 (0.1 to 2.1) pg/ml, P < 0.05). The pulmonary artery pressure and ET-1 level were higher in future responders to INO. CONCLUSIONS: ET-1 may therefore be involved in mediating the response to INO.
Resumo:
BACKGROUND: Prophylactic exogenous surfactant therapy is a promising way to attenuate the ischemia and reperfusion (I/R) injury associated with lung transplantation and thereby to decrease the clinical occurrence of acute lung injury and acute respiratory distress syndrome. However, there is little information on the mode by which exogenous surfactant attenuates I/R injury of the lung. We hypothesized that exogenous surfactant may act by limiting pulmonary edema formation and by enhancing alveolar type II cell and lamellar body preservation. Therefore, we investigated the effect of exogenous surfactant therapy on the formation of pulmonary edema in different lung compartments and on the ultrastructure of the surfactant producing alveolar epithelial type II cells. METHODS: Rats were randomly assigned to a control, Celsior (CE) or Celsior + surfactant (CE+S) group (n = 5 each). In both Celsior groups, the lungs were flush-perfused with Celsior and subsequently exposed to 4 h of extracorporeal ischemia at 4 degrees C and 50 min of reperfusion at 37 degrees C. The CE+S group received an intratracheal bolus of a modified natural bovine surfactant at a dosage of 50 mg/kg body weight before flush perfusion. After reperfusion (Celsior groups) or immediately after sacrifice (Control), the lungs were fixed by vascular perfusion and processed for light and electron microscopy. Stereology was used to quantify edematous changes as well as alterations of the alveolar epithelial type II cells. RESULTS: Surfactant treatment decreased the intraalveolar edema formation (mean (coefficient of variation): CE: 160 mm3 (0.61) vs. CE+S: 4 mm3 (0.75); p < 0.05) and the development of atelectases (CE: 342 mm3 (0.90) vs. CE+S: 0 mm3; p < 0.05) but led to a higher degree of peribronchovascular edema (CE: 89 mm3 (0.39) vs. CE+S: 268 mm3 (0.43); p < 0.05). Alveolar type II cells were similarly swollen in CE (423 microm3(0.10)) and CE+S (481 microm3(0.10)) compared with controls (323 microm3(0.07); p < 0.05 vs. CE and CE+S). The number of lamellar bodies was increased and the mean lamellar body volume was decreased in both CE groups compared with the control group (p < 0.05). CONCLUSION: Intratracheal surfactant application before I/R significantly reduces the intraalveolar edema formation and development of atelectases but leads to an increased development of peribronchovascular edema. Morphological changes of alveolar type II cells due to I/R are not affected by surfactant treatment. The beneficial effects of exogenous surfactant therapy are related to the intraalveolar activity of the exogenous surfactant.
Resumo:
BACKGROUND: In the acute respiratory distress syndrome potentially recruitable lung volume is currently discussed. (3)He-magnetic resonance imaging ((3)He-MRI) offers the possibility to visualize alveolar recruitment directly. METHODS: With the approval of the state animal care committee, unilateral lung damage was induced in seven anesthetized pigs by saline lavage of the right lungs. The left lung served as an intraindividual control (healthy lung). Unilateral lung damage was confirmed by conventional proton MRI and spiral-CT scanning. The total aerated lung volume was determined both at a positive end-expiratory pressure (PEEP) of 0 and 10 mbar from three-dimensionally reconstructed (3)He images, both for healthy and damaged lungs. The fractional increase of aerated volume in damaged and healthy lungs, followed by a PEEP increase from 0 to 10 mbar, was compared. RESULTS: Aerated gas space was visualized with a high spatial resolution in the three-dimensionally reconstructed (3)He-MR images, and aeration defects in the lavaged lung matched the regional distribution of atelectasis in proton MRI. After recruitment and PEEP increase, the aerated volume increased significantly both in healthy lungs from 415 ml [270-445] (median [min-max]) to 481 ml [347-523] and in lavaged lungs from 264 ml [71-424] to 424 ml [129-520]. The fractional increase in lavaged lungs was significantly larger than that in healthy lungs (healthy: 17% [11-38] vs. lavage: 42% [14-90] (P=0.031). CONCLUSION: The (3)He-MRI signal might offer an experimental approach to discriminate atelectatic vs. poor aerated lung areas in a lung damage animal model. Our results confirm the presence of potential recruitable lung volume by either alveolar collapse or alveolar flooding, in accordance with previous reports by computed tomography.
Resumo:
INTRODUCTION Early use of corticosteroids in patients affected by pandemic (H1N1)v influenza A infection, although relatively common, remains controversial. METHODS Prospective, observational, multicenter study from 23 June 2009 through 11 February 2010, reported in the European Society of Intensive Care Medicine (ESICM) H1N1 registry. RESULTS Two hundred twenty patients admitted to an intensive care unit (ICU) with completed outcome data were analyzed. Invasive mechanical ventilation was used in 155 (70.5%). Sixty-seven (30.5%) of the patients died in ICU and 75 (34.1%) whilst in hospital. One hundred twenty-six (57.3%) patients received corticosteroid therapy on admission to ICU. Patients who received corticosteroids were significantly older and were more likely to have coexisting asthma, chronic obstructive pulmonary disease (COPD), and chronic steroid use. These patients receiving corticosteroids had increased likelihood of developing hospital-acquired pneumonia (HAP) [26.2% versus 13.8%, p < 0.05; odds ratio (OR) 2.2, confidence interval (CI) 1.1-4.5]. Patients who received corticosteroids had significantly higher ICU mortality than patients who did not (46.0% versus 18.1%, p < 0.01; OR 3.8, CI 2.1-7.2). Cox regression analysis adjusted for severity and potential confounding factors identified that early use of corticosteroids was not significantly associated with mortality [hazard ratio (HR) 1.3, 95% CI 0.7-2.4, p = 0.4] but was still associated with an increased rate of HAP (OR 2.2, 95% CI 1.0-4.8, p < 0.05). When only patients developing acute respiratory distress syndrome (ARDS) were analyzed, similar results were observed. CONCLUSIONS Early use of corticosteroids in patients affected by pandemic (H1N1)v influenza A infection did not result in better outcomes and was associated with increased risk of superinfections.
Resumo:
Nrf2 is a member of the “cap ‘n’ collar” family of transcription factors. These transcription factors bind to the NF-E2 binding sites (GCTGAGTCA) that are essential for the regulation of erythroid-specific genes. Nrf2 is expressed in a wide range of tissues, many of which are sites of expression for phase 2 detoxification genes. Nrf2−/− mice are viable and have a normal phenotype under normal laboratory conditions. The NF-E2 binding site is a subset of the antioxidant response elements that have the sequence GCNNNGTCA. The antioxidant response elements are regulatory sequences found on promoters of several phase 2 detoxification genes that are inducible by xenobiotics and antioxidants. We report here that Nrf2−/− mice are extremely susceptible to the administration of the antioxidant butylated hydroxytoluene. With doses of butylated hydroxytoluene that are tolerated by wild-type mice, the Nrf2−/− mice succumb from acute respiratory distress syndrome. Gene expression studies show that the expression of several detoxification enzymes is altered in the Nrf2−/− mice. The Nrf2−/− mice may prove to be a good in vivo model for toxicological studies. As oxidative damage causes DNA breakage, these mice may also be useful for testing carcinogenic agents.
Resumo:
Leishmania are parasites that survive within macrophages by mechanism(s) not entirely known. Depression of cellular immunity and diminished production of interleukin 1β (IL-1β) and tumor necrosis factor α are potential ways by which the parasite survives within macrophages. We examined the mechanism(s) by which lipophosphoglycan (LPG), a major glycolipid of Leishmania, perturbs cytokine gene expression. LPG treatment of THP-1 monocytes suppressed endotoxin induction of IL-1β steady-state mRNA by greater than 90%, while having no effect on the expression of a control gene. The addition of LPG 2 h before or 2 h after endotoxin challenge significantly suppressed steady-state IL-1β mRNA by 90% and 70%, respectively. LPG also inhibited tumor necrosis factor α and Staphylococcus induction of IL-1β gene expression. The inhibitory effect of LPG is agonist-specific because LPG did not suppress the induction of IL-1β mRNA by phorbol 12-myristate 13-acetate. A unique DNA sequence located within the −310 to −57 nucleotide region of the IL-1β promoter was found to mediate LPG’s inhibitory activity. The requirement for the −310 to −57 promoter gene sequence for LPG’s effect is demonstrated by the abrogation of LPG’s inhibitory activity by truncation or deletion of the −310 to −57 promoter gene sequence. Furthermore, the minimal IL-1β promoter (positions −310 to +15) mediated LPG’s inhibitory activity with dose and kinetic profiles that were similar to LPG’s suppression of steady-state IL-1β mRNA. These findings delineated a promoter gene sequence that responds to LPG to act as a “gene silencer,” a function, to our knowledge, not previously described. LPG’s inhibitory activity for several mediators of inflammation and the persistence of significant inhibitory activity 2 h after endotoxin challenge suggest that LPG has therapeutic potential and may be exploited for therapy of sepsis, acute respiratory distress syndrome, and autoimmune diseases.
Resumo:
The surfactant protein C (SP-C) gene encodes an extremely hydrophobic, 4-kDa peptide produced by alveolar epithelial cells in the lung. To discern the role of SP-C in lung function, SP-C-deficient (−/−) mice were produced. The SP-C (−/−) mice were viable at birth and grew normally to adulthood without apparent pulmonary abnormalities. SP-C mRNA was not detected in the lungs of SP-C (−/−) mice, nor was mature SP-C protein detected by Western blot of alveolar lavage from SP-C (−/−) mice. The levels of the other surfactant proteins (A, B, D) in alveolar lavage were comparable to those in wild-type mice. Surfactant pool sizes, surfactant synthesis, and lung morphology were similar in SP-C (−/−) and SP-C (+/+) mice. Lamellar bodies were present in SP-C (−/−) type II cells, and tubular myelin was present in the alveolar lumen. Lung mechanics studies demonstrated abnormalities in lung hysteresivity (a term used to reflect the mechanical coupling between energy dissipative forces and tissue-elastic properties) at low, positive-end, expiratory pressures. The stability of captive bubbles with surfactant from the SP-C (−/−) mice was decreased significantly, indicating that SP-C plays a role in the stabilization of surfactant at low lung volumes, a condition that may accompany respiratory distress syndrome in infants and adults.
Resumo:
Including positive end-expiratory pressure (PEEP) in the manual resuscitation bag (MRB) may render manual hyperinflation (MHI) ineffective as a secretion maneuver technique in mechanically ventilated patients. In this study we aimed to determine the effect of increased PEEP or decreased compliance on peak expiratory flow rate (PEF) during MHI. A blinded, randomized study was performed on a lung simulator by 10 physiotherapists experienced in MHI and intensive care practice. PEEP levels of 0-15 cm H2O, compliance levels of 0.05 and 0.02 L/cm H2O, and MRB type were randomized. The Mapleson-C MRB generated significantly higher PEF (P < 0.01, d = 2.72) when compared with the Laerdal MRB for all levels of PEEP. In normal compliance (0.05 L/cm H2O) there was a significant decrease in PEF (P < 0.01, d = 1.45) for a PEEP more than 10 cm H2O in the Mapleson-C circuit. The Laerdal MRB at PEEP levels of more than 10 cm H2O did not generate a PEF that is theoretically capable of producing two-phase gas-liquid flow and, consequently, mobilizing pulmonary secretions. If MHI is indicated as a result of mucous plugging, the Mapleson-C MRB may be the most effective method of secretion mobilization.