928 resultados para ACID-INDUCED SEIZURES
Resumo:
Systemic injection of pilocarpine in rodents induces status epilepticus (SE) and reproduces the main characteristics of temporal lobe epilepsy (TLE). Different mechanisms are activated by SE contributing to cell death and immune system activation. We used BALB/c nude mice, a mutant that is severely immunocompromised, to characterize seizure pattern, neurochemical changes, cell death and c-Fos activation secondarily to pilocarpine-induced SE. The behavioral seizures were less severe in BALB/c nude than in BALB/c wild type mice. However, nude mice presented more tonic clonic episodes and higher mortality rate during SE. The c-Fos expression was most prominent in the caudate-putamen, CA3 (p < 0.05), dentate gyrus, entorhinal cortex (p < 0.001), basolateral nucleus of amygdala (p < 0.01) and piriform cortex (p < 0.05) of BALB/c nude mice than of BALB/c. Besides, nude mice subjected to SE presented high number of Fluorojade-B (FJB) stained cells in the piriform cortex, amygdala (p < 0.05) and hilus (p < 0.05) in comparison with BALB/c mice. A significant increase in the level of glutamate and GABA was found in the hippocampus and cortex of BALB/c mice presenting SE in comparison to controls. However, the level of glutamate was higher in the brains of BALB nude mice than in the brains of BALB/c wild type mice, while the levels of GABA were unchanged. These results indicate that the brains of immunodeficient nude mice are more vulnerable to the deleterious effects of pilocarpine-induced SE as they present intense activation, increased glutamate levels and more cell death. Published by Elsevier B.V.
Resumo:
A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-alpha, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-C-14]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-C-14]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.
Resumo:
Objective. The aim of this study was to investigate the effect of CAPE on the insulin signaling and inflammatory pathway in the liver of mice with high fat diet induced obesity. Material/Methods. Swiss mice were fed with standard chow or high-fat diet for 12-week. After the eighth week, animals in the HFD group with serum glucose levels higher than 200 mg/dL were divided into two groups, HFD and HFD receiving 30 mg/kg of CAPE for 4 weeks. After 12 weeks, the blood samples could be collected and liver tissue extracted for hormonal and biochemical measurements, and insulin signaling and inflammatory pathway analyzes. Results. The high-fat diet group exhibited more weight gain, glucose intolerance, and hepatic steatosis compared with standard diet group. The CAPE treatment showed improvement in glucose sensitivity characterized by an area under glucose curve similar to the control group in an oral glucose tolerance test Furthermore, CAPE treatment promoted amelioration in hepatic steatosis compared with the high-fat diet group. The increase in glucose sensitivity was associated with the improvement in insulin-stimulated phosphorylation of the insulin receptor substrate-2, followed by an increase in Akt phosphorylation. In addition, it was observed that CAPE reduced the induction of the inflammatory pathway, c-jun-N- terminal kinase, the nuclear factor kappa B, and cyclooxygenase-2 expression, respectively. Conclusions. Overall, these findings indicate that CAPE exhibited anti-inflammatory activity that partly restores normal metabolism, reduces the molecular changes observed in obesity and insulin resistance, and therefore has a potential as a therapeutic agent in obesity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Objective: Diabetes causes changes in the salivary glands and in the composition of saliva, as well as symptoms such as dry mouth and hyposalivation. Therefore, this study aimed at investigating changes in salivary secretion and composition, in response to parasympathetic stimuli, in diabetic rats induced with streptozotocin. Design: Diabetes was induced by a single intraperitoneal injection of streptozotocin. Thirty days after diabetes induction, the animals were anaesthetized and salivation was stimulated by an intraperitoneal injection of Pilocarpine (0.6 mg/kg body weight) dissolved in distilled water. Saliva was collected for 40 min and immediately stored at -80 degrees C until analysis. The salivary flow rate, amount of total protein, amylase and peroxidase activities, and free and total sialic acid contents were measured. Results: Salivary flow rate was reduced in the diabetic group (p < 0.05). Moreover, increases in total protein amount and in amylase and peroxidase activities were observed in diabetic animals. No difference was observed for free sialic acid content between groups. On the other hand, a significantly decrease in the total sialic acid content was observed in the diabetic group (p < 0.05). Conclusions: Our findings suggest that a decrease in sialic acid in the saliva of diabetic animals can be related to xerostomia reported by diabetic patients. However, further clinical trials are needed to verify if the decrease in sialic acid also occurs in human saliva. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
LLong-chain fatty acids are capable of inducing alterations in the homoeostasis of glucose-stimulated insulin secretion (GSIS), but the effect of medium-chain fatty acids (MCFA) is poorly elucidated. In the present study, we fed a normoenergetic MCFA diet to male rats from the age of 1 month to the age of 4 months in order to analyse the effect of MCFA on body growth, insulin sensitivity and GSIS. The 45% MCFA substitution of whole fatty acids in the normoenergetic diet impaired whole body growth and resulted in increased body adiposity and hyperinsulinaemia, and reduced insulin-mediated glucose uptake in skeletal muscle. In addition, the isolated pancreatic islets from the MCFA-fed rats showed impaired GSIS and reduced protein kinase Ba (AKT1) protein expression and extracellular signal-related kinase isoforms 1 and 2 (ERK(1/2)) phosphorylation, which were accompanied by increased cellular death. Furthermore, there was a mildly increased cholinergic sensitivity to GSIS. We discuss these findings in further detail, and advocate that they might have a role in the mechanistic pathway leading to the compensatory hyperinsulinaemic status found in this animal model.
Resumo:
Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.
Resumo:
In nocturnal frontal lobe epilepsy (NFLE), seizures occur almost exclusively during NREM sleep. Why precisely these seizures are sleep-bound remains unknown. Studies of patients with nonlesional familial forms of NFLE have suggested the arousal system may play a major role in their pathogenesis. We report the case of a patient with pharmaco-resistant, probably cryptogenic form of non-familial NFLE and strictly sleep-bound seizures that could be elicited by alerting stimuli and were associated with ictal bilateral thalamic and right orbital-insular hyperperfusion on SPECT imaging.
Resumo:
Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) is associated with increased fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent, endogenous biomarkers of PPARalpha activation and hence increased fatty acid beta-oxidation, healthy human volunteers were given fenofibrate orally for 2 weeks and their urine was profiled by UPLC-QTOFMS. Biomarkers identified by the machine learning algorithm random forests included significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold), observations that are consistent with known targets of PPARalpha including pantothenate kinase and genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine (5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers as indicators of PPARalpha activation was demonstrated using the Ppara-null mouse. Urinary pantothenic acid and acylcarnitines may prove useful indicators of PPARalpha-induced fatty acid beta-oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to understand drug effects on lipid metabolism in both human populations and in inbred mouse models.
Resumo:
Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.
Resumo:
Tight homeostatic control of brain amino acids (AA) depends on transport by solute carrier family proteins expressed by the blood-brain barrier (BBB) microvascular endothelial cells (BMEC). To characterize the mouse BMEC transcriptome and probe culture-induced changes, microarray analyses of platelet endothelial cell adhesion molecule-1-positive (PECAM1(+)) endothelial cells (ppMBMECs) were compared with primary MBMECs (pMBMEC) cultured in the presence or absence of glial cells and with b.End5 endothelioma cell line. Selected cell marker and AA transporter mRNA levels were further verified by reverse transcription real-time PCR. Regardless of glial coculture, expression of a large subset of genes was strongly altered by a brief culture step. This is consistent with the known dependence of BMECs on in vivo interactions to maintain physiologic functions, for example, tight barrier formation, and their consequent dedifferentiation in culture. Seven (4F2hc, Lat1, Taut, Snat3, Snat5, Xpct, and Cat1) of nine AA transporter mRNAs highly expressed in freshly isolated ppMBMECs were strongly downregulated for all cultures and two (Snat2 and Eaat3) were variably regulated. In contrast, five AA transporter mRNAs with low expression in ppMBMECs, including y(+)Lat2, xCT, and Snat1, were upregulated by culture. We hypothesized that the AA transporters highly expressed in ppMBMECs and downregulated in culture have a major in vivo function for BBB transendothelial transport.
Resumo:
Activity-dependent alterations of synaptic transmission important for learning and memory are often induced by Ca(2+) signals generated by depolarization. While it is widely assumed that Ca(2+) is the essential transducer of depolarization into cellular plasticity, little effort has been made to test whether Ca(2+)-independent responses to depolarization might also induce memory-like alterations. It was recently discovered that peripheral axons of nociceptive sensory neurons in Aplysia display long-lasting hyperexcitability triggered by conditioning depolarization in the absence of Ca(2+) entry (using nominally Ca(2+)-free solutions containing EGTA, "0Ca/EGTA") or the absence of detectable Ca(2+) transients (adding BAPTA-AM, "0Ca/EGTA/BAPTA-AM"). The current study reports that depolarization of central ganglia to approximately 0 mV for 2 min in these same solutions induced hyperexcitability lasting >1 h in sensory neuron processes near their synapses onto motor neurons. Furthermore, conditioning depolarization in these solutions produced a 2.5-fold increase in excitatory postsynaptic potential (EPSP) amplitude 1-3 h afterward despite a drop in motor neuron input resistance. Depolarization in 0 Ca/EGTA produced long-term potentiation (LTP) of the EPSP lasting > or = 1 days without changing postsynaptic input resistance. When re-exposed to extracellular Ca(2+) during synaptic tests, prior exposure to 0Ca/EGTA or to 0Ca/EGTA/BAPTA-AM decreased sensory neuron survival. However, differential effects on neuronal health are unlikely to explain the observed potentiation because conditioning depolarization in these solutions did not alter survival rates. These findings suggest that unrecognized Ca(2+)-independent signals can transduce depolarization into long-lasting synaptic potentiation, perhaps contributing to persistent synaptic alterations following large, sustained depolarizations that occur during learning, neural injury, or seizures.
Resumo:
The injurious effect of nonsteroidal anti-inflammatory drugs (NSAIDs) in the small intestine was not appreciated until the widespread use of capsule endoscopy. Animal studies found that NSAID-induced small intestinal injury depends on the ability of these drugs to be secreted into the bile. Because the individual toxicity of amphiphilic bile acids and NSAIDs directly correlates with their interactions with phospholipid membranes, we propose that the presence of both NSAIDs and bile acids alters their individual physicochemical properties and enhances the disruptive effect on cell membranes and overall cytotoxicity. We utilized in vitro gastric AGS and intestinal IEC-6 cells and found that combinations of bile acid, deoxycholic acid (DC), taurodeoxycholic acid, glycodeoxycholic acid, and the NSAID indomethacin (Indo) significantly increased cell plasma membrane permeability and became more cytotoxic than these agents alone. We confirmed this finding by measuring liposome permeability and intramembrane packing in synthetic model membranes exposed to DC, Indo, or combinations of both agents. By measuring physicochemical parameters, such as fluorescence resonance energy transfer and membrane surface charge, we found that Indo associated with phosphatidylcholine and promoted the molecular aggregation of DC and potential formation of larger and isolated bile acid complexes within either biomembranes or bile acid-lipid mixed micelles, which leads to membrane disruption. In this study, we demonstrated increased cytotoxicity of combinations of bile acid and NSAID and provided a molecular mechanism for the observed toxicity. This mechanism potentially contributes to the NSAID-induced injury in the small bowel.