213 resultados para 99mTc-Timina
Multifactorial approach to non-viral gene therapy: development of an efficient system for the retina
Resumo:
Tese de Doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
Liver cancer accounts for nearly 10% of all cancers in the US. Intrahepatic Arterial Radiomicrosphere Therapy (RMT), also known as Selective Internal Radiation Treatment (SIRT), is one of the evolving treatment modalities. Successful patient clinical outcomes require suitable treatment planning followed by delivery of the microspheres for therapy. The production and in vitro evaluation of various polymers (PGCD, CHS and CHSg) microspheres for a RMT and RMT planning are described. Microparticles with a 30±10 µm size distribution were prepared by emulsion method. The in vitro half-life of the particles was determined in PBS buffer and porcine plasma and their potential application (treatment or treatment planning) established. Further, the fast degrading microspheres (≤ 48 hours in vitro half-life) were labeled with 68Ga and/or 99mTc as they are suitable for the imaging component of treatment planning, which is the primary emphasis of this dissertation. Labeling kinetics demonstrated that 68Ga-PGCD, 68Ga-CHSg and 68Ga-NOTA-CHSg can be labeled with more than 95% yield in 15 minutes; 99mTc-PGCD and 99mTc-CHSg can also be labeled with high yield within 15-30 minutes. In vitro stability after four hours was more than 90% in saline and PBS buffer for all of them. Experiments in reconstituted hemoglobin lysate were also performed. Two successful imaging (RMT planning) agents were found: 99mTc-CHSg and 68Ga-NOTA-CHSg. For the 99mTc-PGCD a successful perfusion image was obtained after 10 minutes, however the in vivo degradation was very fast (half-life), releasing the 99mTc from the lungs. Slow degrading CHS microparticles (> 21 days half-life) were modified with p-SCN-b-DOTA and labeled with 90Y for production of 90Y-DOTA-CHS. Radiochemical purity was evaluated in vitro and in vivo showing more than 90% stability after 72 and 24 hours respectively. All agents were compared to their respective gold standards (99mTc-MAA for 68Ga-NOTA-CHSg and 99mTc-CHSg; 90Y-SirTEX for 90Y-DOTA-CHS) showing superior in vivo stability. RMT and RMT planning agents (Therapy, PET and SPECT imaging) were designed and successfully evaluated in vitro and in vivo.
Resumo:
I generatori compatti di neutroni possono rappresentare un grande progresso nell'ambito della Medicina Nucleare. Sono una valida alternativa rispetto ai metodi tradizionali per la produzione dei radioisotopi necessari per la sintesi dei radiofarmaci, e permettono di esplorare e sviluppare nuove metodologie radioterapeutiche innovative, complementari e potenzialmente più efficaci rispetto a quelle già esistenti. Enea sta portando avanti due progetti in questo ambito. Il primo, SORGENTINA-RF, è volto allo sviluppo di una macchina in grado di produrre un fascio di neutroni a 14MeV, con la quale irradiare un target di molibdeno metallico, in modo da ottenere tecnezio-99 metastabile (99mTc), il radioisotopo più usato al mondo nelle procedure di imaging biomedico. Il secondo progetto, LINC-ER, ha lo scopo di progettare le infrastrutture necessarie ad accogliere un generatore compatto di neutroni, il cui scopo sarà quello di eliminare le residue cellule tumorali dopo un intervento chirurgico, a ferita aperta, in modo simile alle attuali tecniche di radioterapia intraoperatoria, che però sfruttano elettroni o raggi X. Questo lavoro di tesi trova posto in questi progetti perché ha contributo a portare avanti le ricerche in due aspetti specifici. Nel caso di SORGENTINA-RF, sono stati studiati tutti gli aspetti radiochimici per ottenere dal molibdeno metallico la soluzione liquida di molibdato sodico da cui si estrae il 99mTc. In questo caso si è deciso di puntare su processo “green” e innovativo basato sull’uso di perossido di idrogeno. Durante la tesi si sono studiati i più importanti fattori che governano questo processo e si è definito un meccanismo chimico che lo spiega. Nel caso di LINC-ER, invece, il lavoro sperimentale è stato quello di studiare metodi e rotte sintetiche nuove per ottenere nanoparticelle di composti di boro e bario, dispersi in hydrogels in grado di amplificare gli effetti del fascio neutronico sui tessuti cancerogeni e ridurli su quelli sani.