944 resultados para 5-HT1A and 5-HT2C receptors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic neurons, culminating with the emergence of entrained cardiovascular and respiratory reflex responses. Studies have proposed that the ventrolateral region of the medulla oblongata is a major site of synaptic interaction between respiratory and sympathetic neurons. However, other brainstem regions also play a relevant role in the patterning of respiratory and sympathetic motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary tract (NTS), in the dorsal medulla, are essential for the processing and coordination of respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the excitatory drive from afferent inputs is complex and involves distinct neurotransmitters, including glutamate, ATP and acetylcholine. In the present review we discuss the role of the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also analyze the neuroplasticity of NTS neurons and their contribution for the development of cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep apnea and metabolic disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Homozygous loss of function mutations in interleukin-10 (IL10) and interleukin-10 receptors (IL10R) cause severe infantile (very early onset) inflammatory bowel disease (IBD). Allogeneic hematopoietic stem cell transplantation (HSCT) was reported to induce sustained remission in 1 patient with IL-10R deficiency. We investigated heterogeneity among patients with very early onset IBD, its mechanisms, and the use of allogeneic HSCT to treat this disorder. METHODS: We analyzed 66 patients with early onset IBD (younger than 5 years of age) for mutations in the genes encoding IL-10, IL-10R1, and IL-10R2. IL-10R deficiency was confirmed by functional assays on patients' peripheral blood mononuclear cells (immunoblot and enzyme-linked immunosorbent assay analyses). We assessed the therapeutic effects of standardized allogeneic HSCT. RESULTS: Using a candidate gene sequencing approach, we identified 16 patients with IL-10 or IL-10R deficiency: 3 patients had mutations in IL-10, 5 had mutations in IL-10R1, and 8 had mutations in IL-10R2. Refractory colitis became manifest in all patients within the first 3 months of life and was associated with perianal disease (16 of 16 patients). Extraintestinal symptoms included folliculitis (11 of 16) and arthritis (4 of 16). Allogeneic HSCT was performed in 5 patients and induced sustained clinical remission with a median follow-up time of 2 years. In vitro experiments confirmed reconstitution of IL-10R-mediated signaling in all patients who received the transplant. CONCLUSIONS: We identified loss of function mutations in IL-10 and IL-10R in patients with very early onset IBD. These findings indicate that infantile IBD patients with perianal disease should be screened for IL-10 and IL-10R deficiency and that allogeneic HSCT can induce remission in those with IL-10R deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tonic immobility (TI) is an innate defensive behavior that can be elicited by physical restriction and postural inversion and is characterized by a profound and temporary state of akinesis. Our previous studies demonstrated that the stimulation of serotonin receptors in the dorsal raphe nucleus (DRN) appears to be biphasic during TI responses in guinea pigs (Cavia porcellus). Serotonin released by the DRN modulates behavioral responses and its release can occur through the action of different neurotransmitter systems, including the opioidergic and GABAergic systems. This study examines the role of opioidergic, GABAergic and serotonergic signaling in the DRN in TI defensive behavioral responses in guinea pigs. Microinjection of morphine (1.1 nmol) or bicuculline (0.5 nmol) into the DRN increased the duration of TI. The effect of morphine (1.1 nmol) was antagonized by pretreatment with naloxone (0.7 nmol), suggesting that the activation of pi opioid receptors in the DRN facilitates the TI response. By contrast, microinjection of muscimol (0.5 nmol) into the DRN decreased the duration of TI. However, a dose of muscimol (0.26 nmol) that alone did not affect TI, was sufficient to inhibit the effect of morphine (1.1 nmol) on TI, indicating that GABAergic and enkephalinergic neurons interact in the DRN. Microinjection of alpha-methyl-5-HT (1.6 nmol), a 5-HT2 agonist, into the DRN also increased TI. This effect was inhibited by the prior administration of naloxone (0.7 nmol). Microinjection of 8-OH-DPAT (1.3 nmol) also blocked the increase of TI promoted by morphine (1.1 nmol). Our results indicate that the opioidergic, GABAergic and serotonergic systems in the DRN are important for modulation of defensive behavioral responses of TI. Therefore, we suggest that opioid inhibition of GABAergic neurons results in disinhibition of serotonergic neurons and this is the mechanism by which opioids could enhance TI. Conversely, a decrease in TI could occur through the activation of GABAergic interneurons. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide hormone receptors overexpressed in human tumors, such as somatostatin receptors, can be used for in vivo targeting for diagnostic and therapeutic purposes. A novel promising candidate in this field is the GLP-1 receptor, which was recently shown to be massively overexpressed in gut and lung neuroendocrine tumors--in particular, in insulinomas. Anticipating a major development of GLP-1 receptor targeting in nuclear medicine, our aim was to evaluate in vitro the GLP-1 receptor expression in a large variety of other tumors and to compare it with that in nonneoplastic tissues. METHODS: The GLP-1 receptor protein expression was qualitatively and quantitatively investigated in a broad spectrum of human tumors (n=419) and nonneoplastic human tissues (n=209) with receptor autoradiography using (125)I-GLP-1(7-36)amide. Pharmacologic competition experiments were performed to provide proof of specificity of the procedure. RESULTS: GLP-1 receptors were expressed in various endocrine tumors, with particularly high amounts in pheochromocytomas, as well as in brain tumors and embryonic tumors but not in carcinomas or lymphomas. In nonneoplastic tissues, GLP-1 receptors were present in generally low amounts in specific tissue compartments of several organs--namely, pancreas, intestine, lung, kidney, breast, and brain; no receptors were identified in lymph nodes, spleen, liver, or the adrenal gland. The rank order of potencies for receptor binding--namely, GLP-1(7-36)amide = exendin-4 >> GLP-2 = glucagon(1-29)--provided proof of specific GLP-1 receptor identification. CONCLUSION: The GLP-1 receptors may represent a novel molecular target for in vivo scintigraphy and targeted radiotherapy for a variety of GLP-1 receptor-expressing tumors. For GLP-1 receptor scintigraphy, a low-background signal can be expected, on the basis of the low receptor expression in the normal tissues surrounding tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Anti-inflammatory drugs are used in the treatment of acute renal colic. The aim of this study was to investigate the effects of selective COX-2 inhibitors and the non-selective COX inhibitor diclofenac on contractility of human and porcine ureters in vitro and in vivo, respectively. COX-1 and COX-2 receptors were identified in human ureter and kidney. EXPERIMENTAL APPROACH: Human ureter samples were used alongside an in vivo pig model with or without partial ureteral obstruction. COX-1 and COX-2 receptors were located in human ureters by immunohistochemistry. KEY RESULTS: Diclofenac and valdecoxib significantly decreased the amplitude of electrically-stimulated contractions in human ureters in vitro, the maximal effect (Vmax) being 120 and 14%, respectively. Valdecoxib was more potent in proximal specimens of human ureter (EC50=7.3 x 10(-11) M) than in distal specimens (EC50=7.4 x 10(-10) M), and the Vmax was more marked in distal specimens (22.5%) than in proximal specimens (8.0%) in vitro. In the in vivo pig model, parecoxib, when compared to the effect of its solvent, significantly decreased the maximal amplitude of contractions (Amax) in non-obstructed ureters but not in obstructed ureters. Diclofenac had no effect on spontaneous contractions of porcine ureter in vivo. COX-1 and COX-2 receptors were found to be expressed in proximal and distal human ureter and in tubulus epithelia of the kidney. CONCLUSIONS AND IMPLICATIONS: Selective COX-2 inhibitors decrease the contractility of non-obstructed, but not obstructed, ureters of the pig in vivo, but have a minimal effect on electrically-induced contractions of human ureters in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of rhythmic electrical activity is a prominent feature of spinal cord circuits that is used for locomotion and also for circuit refinement during development. The mechanisms involved in rhythm generation in spinal cord networks are not fully understood. It is for example not known whether spinal cord rhythms are driven by pacemaker neurons and if yes, which neurons are involved in this function. We studied the mechanisms involved in rhythm generation in slice cultures from fetal rats that were grown on multielectrode arrays (MEAs). We combined multisite extracellular recordings from the MEA electrodes with intracellular patch clamp recordings from single neurons. We found that spatially restricted oscillations of activity appeared in most of the cultures spontaneously. Such activity was based on intrinsic activity in a percentage of the neurons that could activate the spinal networks through recurrent excitation. The local oscillator networks critically involved NMDA, AMPA and GABA / glycine receptors at subsequent phases of the oscillation cycle. Intrinsic spiking in individual neurons (in the absence of functional synaptic coupling) was based on persistent sodium currents. Intrinsic firing as well as persistent sodium currents were increased by 5-HT through 5-HT2 receptors. Comparing neuronal activity to muscle activity in co-cultures of spinal cord slices with muscle fibers we found that a percentage of the intrinsically spiking neurons were motoneurons. These motoneurons were electrically coupled among each other and they could drive the spinal networks through cholinergic recurrent excitation. These findings open the possibility that during development rhythmic activity in motoneurons is not only involved in circuit refinement downstream at the neuromuscular endplates but also upstream at the level of spinal cord circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal studies have shown that behavioral responses to cocaine-related cues are altered by serotonergic medications. The effects of pharmacological agents on serotonin receptors 2a (5-HT2A) and 2c (5-HT2C), have yielded results suggesting that selective 5-HT2A antagonists and 5-HT2C agonists promote the disruption of cocaine-associated memories. One measure of cocaine related cues in humans is attentional bias, in which cocaine dependent individuals show greater response latency for cocaine related words than neutral words. Data from our laboratory shows that cocaine dependent subjects have altered attentional bias compared to controls. The purpose of this thesis was to investigate the role of the serotonin system in attentional bias and impulsivity in cocaine dependent individuals. We focused on the serotonin transporter, serotonin receptors 2A and 2C and tryptophan hydroxylase 1 and 2 (TPH1 and TPH2). We predicted that attentional bias and impulsivity would be higher in cocaine dependent individuals who had lower serotonin function. In the current study, we found a significant association between TPH2 genotype and attentional bias for the second block of the cocaine Stroop task. There was also a significant association between average attentional bias and HTTLPR genotype in the cocaine dependent individuals. The HT2C receptor genotype and attentional bias in our study sample also showed a significant difference. We did not find a significant difference between the serotonin 2A receptor variants or the TPH1 variants and attentional bias in the cocaine dependent group. In conclusion, the current study suggests that serotonergic medications should be utilized as pharmacotherapeutic treatment for cocaine addiction. Our results indicate that TPH2, the serotonin transporter and 2C receptor should be targeted in such a way as to modulate both, leading to increased synaptic serotonin function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms' tumor gene, WT1, encodes a zinc finger transcription factor which functions as a tumor suppressor. Defects in the WT1 gene can result in the development of nephroblastoma. WT1 is expressed during development, primarily in the metanephric kidney, the mesothelial lining of the abdomen and thorax, and the developing gonads. WT1 expression is tightly regulated and is essential for renal development. The WT1 gene encodes a protein with a proline-rich N-terminus which functions as a transcriptional repressor and C-terminus contains 4 zinc fingers that mediate DNA binding. WT1 represses transcription from a number of growth factors and growth factor receptors. WT1 mRNA undergoes alternative splicing at two sites, resulting in 4 mRNA species and polypeptide products. Exon 5, encoding 17 amino acids is alternatively spliced, and is located between the transcriptional repression domain and the DNA binding domain. The second alternative splice is the terminal 9 nucleotides of zinc finger 3, encoding the tripeptide Lys-Thr-Ser (KTS). The presence or absence of KTS within the zinc fingers of WT1 alters DNA binding.^ I have investigated transcriptional regulation of WT1, characterizing two means of repressing WT1 transcription. I have cloned a transcriptional silencer of the WT1 promoter which is located in the third intron of the WT1 gene. The silencer is 460 bp in length and contains an Alu repeat. The silencer functions in cells of non-renal origin.^ I have found that WT1 protein can autoregulate the WT1 promoter. Using the autoregulation of the WT1 promoter as a functional assay, I have defined differential consensus DNA binding motifs of WT1 isoforms lacking and containing the KTS tripeptide insertion. With these refined consensus DNA binding motifs, I have identified two additional targets of WT1 transcriptional repression, the proto-oncogenes bcl-2 and c-myc.^ I have investigated the ability of the alternatively spliced exon 5 to influence cell growth. In cell proliferation assays, isoforms of WT1 lacking exon 5 repress cell growth. WT1 isoforms containing exon 5 fail to repress cell growth to the same extent, but alter the morphology of the cells. These experiments demonstrate that the alternative splice isoforms of WT1 have differential effects on the function of WT1. These findings suggest a role for the alternative splicing of WT1 in metanephric development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Mental stress reliably induces increases in salivary alpha amylase (sAA), a suggested surrogate marker for sympathetic nervous system (SNS) reactivity. While stress-induced sAA increases correlate with norepinephrine (NE) secretion, a potential mediating role of noradrenergic mechanisms remains unclear. In this study, we investigated for the first time in humans whether a NE-stress-reactivity mimicking NE-infusion with and without alpha-adrenergic blockade by phentolamine would induce changes in sAA. METHODS: In a single-blind placebo-controlled within-subjects design, 21 healthy men (29-66 years) took part in three different experimental trials varying in terms of substance infusion with a 1-min first infusion followed by a 15-min second infusion: saline-infusion (trial-1), NE-infusion (5 μg/min) without alpha-adrenergic blockade (trial-2), and with phentolamine-induced non-selective blockade of alpha1- and alpha2-adrenergic receptors (trial-3). Saliva samples were collected immediately before, during, and several times after substance infusion in addition to blood pressure and heart rate readings. RESULTS: Experimental trials significantly differed in sAA reactivity to substance-infusion (p=.001) with higher sAA reactivity following NE-infusion with (trial-3; p=.001) and without alpha-adrenergic-blockade (trial-2; p=.004) as compared to placebo-infusion (trial-1); sAA infusion reactivity did not differ between trial-2 and trial-3 (p=.29). Effective phentolamine application was verified by blood pressure and heart rate infusion reactivity. Salivary cortisol was not affected by NE, either with or without alpha-adrenergic-blockade. CONCLUSIONS: We found that NE-infusion stimulates sAA secretion, regardless of co-administered non-selective alpha-adrenergic blockade by phentolamine, suggesting that the mechanism underlying stress-induced sAA increases may involve NE.