994 resultados para 4-chamber View
Resumo:
Stone tools and faunal remains have been recovered from the English Channel and the North Sea through trawling, dredging for aggregates, channel clearance, and coring. These finds highlight the potential for a maritime Lower Palaeolithic archaeological resource. It is proposed here that any Lower Palaeolithic artefacts, faunal remains, and sediments deposited in the maritime zone during dry, low-stand phases were once (and may still be) contextually similar to their counterparts in the terrestrial Lower Palaeolithic records of north-western Europe. Given these similarities, can interpretive models and analytical frameworks developed for terrestrial archaeology be profitably applied to an assessment of the potential value of any maritime resource? The terrestrial geoarchaeological resource for the Lower Palaeolithic is dominated by artefacts and ecofacts that have been fluvially reworked. The spatio-temporal resolution of these data varies from entire river valleys and marine isotope stages to river channel gravel bar surfaces and decadal timescales, thus supporting a variety of questions and approaches. However, the structure of the terrestrial resource also highlights two fundamental limitations in current maritime knowledge that can restrict the application of terrestrial approaches to any potential maritime resource: (i) how have the repetitive transgressions and regressions of the Middle and Late Pleistocene modified the terrace landforms and sediments associated with the river systems of the English Channel and southern North Sea basins?; and (ii) do the surviving submerged terrace landforms and fluvial sedimentary deposits support robust geochronological models, as is the case with the classical terrestrial terrace sequences? This paper highlights potential approaches to these questions, and concludes that the fluvial palaeogeography, Pleistocene fossils, and potential Lower Palaeolithic artefacts of the maritime geoarchaeological resource can be profitably investigated in future as derived, low-resolution data sets, facilitating questions of colonisation, occupation, demography, and material culture.
Resumo:
On 15-17 February 2008, a CME with an approximately circular cross section was tracked through successive images obtained by the Heliospheric Imager (HI) instrument onboard the STEREO-A spacecraft. Reasoning that an idealised flux rope is cylindrical in shape with a circular cross-section, best fit circles are used to determine the radial width of the CME. As part of the process the radial velocity and longitude of propagation are determined by fits to elongation-time maps as 252±5 km/s and 70±5° respectively. With the longitude known, the radial size is calculated from the images, taking projection effects into account. The radial width of the CME, S (AU), obeys a power law with heliocentric distance, R, as the CME travels between 0.1 and 0.4 AU, such that S=0.26 R0.6±0.1. The exponent value obtained is compared to published studies based on statistical surveys of in situ spacecraft observations of ICMEs between 0.3 and 1.0 AU, and general agreement is found. This paper demonstrates the new opportunities provided by HI to track the radial width of CMEs through the previously unobservable zone between the LASCO field of view and Helios in situ measurements.
Resumo:
Study objectives: There is a possibility that lower air, moisture and light protection could impact on physico-chemical stability of medicines inside multi-compartment compliance aids (MCCAs), although this has not yet been proved. The objectives of the study were to examine the physico-chemical stability of atenolol tablets stored in a compliance aid at room temperature, and at elevated temperature and humidity to simulate practice conditions. Methods: Atenolol 100 mg tablets in 28-chamber, plastic compliance aids with transparent lids were stored for four weeks at room temperature and at 40°C with 75% relative humidity. Tablets were also stored at room temperature in original packaging and Petri dishes. Physical tests were conducted to standards as laid down in the British Pharmacopoeia 2005, and dissolution to those of the United States Pharmacopoeia volume 24. Chemical stability was assessed by a validated high-performance liquid chromatography (HPLC) method. Results: Tablets at room temperature in original packaging, in compliance aids and Petri dishes remained the same in appearance and passed physico-chemical tests. Tablets exposed to 40°C with 75% relative humidity in compliance aids passed tests for uniformity of weight, friability and chemical stability but became pale and moist, softer (82 newtons ± 4; p< 0.0001) than tablets in the original packaging (118 newtons ± 6), more friable (0.14% loss of mass) compared with other tablets (0.005%), and failed the tests for disintegration (>15 minutes) and dissolution (only 15% atenolol released at 30 minutes). Conclusion: Although chemical stability was unaffected, storage in compliance aids at 40°C with 75% relative humidity softened atenolol tablets, prolonged disintegration time and hindered dissolution which could significantly reduce bioavailability. This formulation could be suitable for storage in compliance aids at 25°C, but not in hotter, humid weather.
Resumo:
During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm−3 s−1, and growth rates between 2 and 37 nm h−1. The corresponding H2SO4 concentrations were typically around 106 cm−3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 _C).
Resumo:
The ir absorption of gaseous 15NH3 between 510 and 3040 cm−1 was recorded with a resolution of 0.06 cm−1. The ν2, 2ν2, 3ν2, ν4, and ν2 + ν4 bands were measured and analyzed on the basis of the vibration-rotation Hamiltonian developed by V. Špirko, J. M. R. Stone, and D. Papoušek (J. Mol. Spectrosc. 60, 159–178 (1976)). A set of effective molecular parameters for the ν2 = 1, 2, 3 states was derived, which reproduced the transition frequencies within the accuracy of the experimental measurements. For ν4 and ν2 + ν4 bands the standard deviation of the calculated spectrum is about four times larger than the measurements accuracy: a similar result was found for ν4 in 14NH3 by Š. Urban et al. (J. Mol. Spectrosc. 79, 455–495 (1980)). This result suggests that the present treatment takes into account only the most significant part of the rovibration interaction in the doubly degenerate vibrational states of ammonia.
Resumo:
Three experiments have been performed to resolve an uncertainty in the assignment of ν2 and ν4 for SO3: (i) the gas phase Raman spectrum has been measured; (ii) the infrared active combination band ν3 + ν4 has been measured; (iii) a band contour calculation has been performed taking account of the ℓ-type resonance in ν4 and a strong Coriolis resonance between ν2 and ν4. These experiments establish beyond any doubt that ν2 lies at about 497.5 cm−1 and ν4 lies at about 530.2 cm−1. The contour calculation also shows that the Coriolis resonance gives rise to a positive intensity perturbation.
Resumo:
The microwave spectrum for thietan-2,2,4,4-d4 is analysed in six of its lowest puckering states and up to J = 25. The close lying pairs of states of vp = 0/1, 2/3 and 4/5 are treated with a vibration-rotation hamiltonian which includes an off-diagonal coupling term in vp. Additional corrections to this coupling term in higher powers of the angular momentum operator are derived and their importance for improving the fit of calculated to observed data is tested. The variation of the centrifugal distortion constants with vp follows the model of Creswell and Mills (1974, J. molec. Spectrosc., 52, 392). A value is determined for the derivative with respect to the puckering coordinate of the ac-component of the inverse moment of inertia tensor.
Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-beta-D-glucan in endosperm of wheat
Resumo:
(1,3;1,4)-beta-d-Glucan (beta-glucan) accounts for 20% of the total cell walls in the starchy endosperm of wheat (Triticum aestivum) and is an important source of dietary fiber for human nutrition with potential health benefits. Bioinformatic and array analyses of gene expression profiles in developing caryopses identified the CELLULOSE SYNTHASE-LIKE F6 (CSLF6) gene as encoding a putative beta-glucan synthase. RNA interference constructs were therefore designed to down-regulate CSLF6 gene expression and expressed in transgenic wheat under the control of a starchy endosperm-specific HMW subunit gene promoter. Analysis of wholemeal flours using an enzyme-based kit and by high-performance anion-exchange chromatography after digestion with lichenase showed decreases in total beta-glucan of between 30% and 52% and between 36% and 53%, respectively, in five transgenic lines compared to three control lines. The content of water-extractable beta-glucan was also reduced by about 50% in the transgenic lines, and the M(r) distribution of the fraction was decreased from an average of 79 to 85 x 10(4) g/mol in the controls and 36 to 57 x 10(4) g/mol in the transgenics. Immunolocalization of beta-glucan in semithin sections of mature and developing grains confirmed that the impact of the transgene was confined to the starchy endosperm with little or no effect on the aleurone or outer layers of the grain. The results confirm that the CSLF6 gene of wheat encodes a beta-glucan synthase and indicate that transgenic manipulation can be used to enhance the health benefits of wheat products.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) is a key ionization technique in mass spectrometry (MS) for the analysis of labile macromolecules. An important area of study and improvements in relation to MALDI and its application in high-sensitivity MS is that of matrix design and sample preparation. Recently, 4-chloro-alpha-cyanocinnamic acid (ClCCA) has been introduced as a new rationally designed matrix and reported to provide an improved analytical performance as demonstrated by an increase in sequence coverage of protein digests obtained by peptide mass mapping (PMM) (Jaskolla, T. W.; et al. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12200-12205). This new matrix shows the potential to be a superior alternative to the commonly used and highly successful alpha-cyano-4-hydroxycinnamic acid (CHCA). We have taken this design one step further by developing and optimizing an ionic liquid matrix (ILM) and liquid support matrix (LSM) using ClCCA as the principle chromophore and MALDI matrix compound. These new liquid matrices possess greater sample homogeneity and a simpler morphology. The data obtained from our studies show improved sequence coverage for BSA digests compared to the traditional CHCA crystalline matrix and for the ClCCA-containing ILM a similar performance to the ClCCA crystalline matrix down to 1 fmol of BSA digest prepared in a single MALDI sample droplet with current sensitivity levels in the attomole range. The LSMs show a high tolerance to contamination such as ammonium bicarbonate, a commonly used buffering agent.
Resumo:
Reducing carbon conversion of ruminally degraded feed into methane increases feed efficiency and reduces emission of this potent greenhouse gas into the environment. Accurate, yet simple, predictions of methane production of ruminants on any feeding regime are important in the nutrition of ruminants, and in modeling methane produced by them. The current work investigated feed intake, digestibility and methane production by open-circuit respiration measurements in sheep fed 15 untreated, sodium hydroxide (NaOH) treated and anhydrous ammonia (NH3) treated wheat, barley and oat straws. In vitro fermentation characteristics of straws were obtained from incubations using the Hohenheim gas production system that measured gas production, true substrate degradability, short-chain fatty acid production and efficiency of microbial production from the ratio of truly degraded substrate to gas volume. In the 15 straws, organic matter (OM) intake and in vivo OM digestibility ranged from 563 to 1201 g and from 0.464 to 0.643, respectively. Total daily methane production ranged from 13.0 to 34.4 l, whereas methane produced/kg OM matter apparently digested in vivo varied from 35.0 to 61.8 l. The OM intake was positively related to total methane production (R2 = 0.81, P<0.0001), and in vivo OM digestibility was also positively associated with methane production (R2 = 0.67, P<0.001), but negatively associated with methane production/kg digestible OM intake (R2 = 0.61, P<0.001). In the in vitro incubations of the 15 straws, the ratio of acetate to propionate ranged from 2.3 to 2.8 (P<0.05) and efficiencies of microbial production ranged from 0.21 to 0.37 (P<0.05) at half asymptotic gas production. Total daily methane production, calculated from in vitro fermentation characteristics (i.e., true degradability, SCFA ratio and efficiency of microbial production) and OM intake, compared well with methane measured in the open-circuit respiration chamber (y = 2.5 + 0.86x, R2 = 0.89, P<0.0001, Sy.x = 2.3). Methane production from forage fed ruminants can be predicted accurately by simple in vitro incubations combining true substrate degradability and gas volume measurements, if feed intake is known.