978 resultados para 3D reconstruction accuracy
Resumo:
L’athérosclérose est une maladie qui cause, par l’accumulation de plaques lipidiques, le durcissement de la paroi des artères et le rétrécissement de la lumière. Ces lésions sont généralement localisées sur les segments artériels coronariens, carotidiens, aortiques, rénaux, digestifs et périphériques. En ce qui concerne l’atteinte périphérique, celle des membres inférieurs est particulièrement fréquente. En effet, la sévérité de ces lésions artérielles est souvent évaluée par le degré d’une sténose (réduction >50 % du diamètre de la lumière) en angiographie, imagerie par résonnance magnétique (IRM), tomodensitométrie ou échographie. Cependant, pour planifier une intervention chirurgicale, une représentation géométrique artérielle 3D est notamment préférable. Les méthodes d’imagerie par coupe (IRM et tomodensitométrie) sont très performantes pour générer une imagerie tridimensionnelle de bonne qualité mais leurs utilisations sont dispendieuses et invasives pour les patients. L’échographie 3D peut constituer une avenue très prometteuse en imagerie pour la localisation et la quantification des sténoses. Cette modalité d’imagerie offre des avantages distincts tels la commodité, des coûts peu élevés pour un diagnostic non invasif (sans irradiation ni agent de contraste néphrotoxique) et aussi l’option d’analyse en Doppler pour quantifier le flux sanguin. Étant donné que les robots médicaux ont déjà été utilisés avec succès en chirurgie et en orthopédie, notre équipe a conçu un nouveau système robotique d’échographie 3D pour détecter et quantifier les sténoses des membres inférieurs. Avec cette nouvelle technologie, un radiologue fait l’apprentissage manuel au robot d’un balayage échographique du vaisseau concerné. Par la suite, le robot répète à très haute précision la trajectoire apprise, contrôle simultanément le processus d’acquisition d’images échographiques à un pas d’échantillonnage constant et conserve de façon sécuritaire la force appliquée par la sonde sur la peau du patient. Par conséquent, la reconstruction d’une géométrie artérielle 3D des membres inférieurs à partir de ce système pourrait permettre une localisation et une quantification des sténoses à très grande fiabilité. L’objectif de ce projet de recherche consistait donc à valider et optimiser ce système robotisé d’imagerie échographique 3D. La fiabilité d’une géométrie reconstruite en 3D à partir d’un système référentiel robotique dépend beaucoup de la précision du positionnement et de la procédure de calibration. De ce fait, la précision pour le positionnement du bras robotique fut évaluée à travers son espace de travail avec un fantôme spécialement conçu pour simuler la configuration des artères des membres inférieurs (article 1 - chapitre 3). De plus, un fantôme de fils croisés en forme de Z a été conçu pour assurer une calibration précise du système robotique (article 2 - chapitre 4). Ces méthodes optimales ont été utilisées pour valider le système pour l’application clinique et trouver la transformation qui convertit les coordonnées de l’image échographique 2D dans le référentiel cartésien du bras robotisé. À partir de ces résultats, tout objet balayé par le système robotique peut être caractérisé pour une reconstruction 3D adéquate. Des fantômes vasculaires compatibles avec plusieurs modalités d’imagerie ont été utilisés pour simuler différentes représentations artérielles des membres inférieurs (article 2 - chapitre 4, article 3 - chapitre 5). La validation des géométries reconstruites a été effectuée à l`aide d`analyses comparatives. La précision pour localiser et quantifier les sténoses avec ce système robotisé d’imagerie échographique 3D a aussi été déterminée. Ces évaluations ont été réalisées in vivo pour percevoir le potentiel de l’utilisation d’un tel système en clinique (article 3- chapitre 5).
Resumo:
The main task of this work has been to investigate the effects of anisotropy onto the propagation of seismic waves along the Upper Mantle below Germany and adjacent areas. Refraction- and reflexion seismic experiments proved the existence of Upper Mantle anisotropy and its influence onto the propagation of Pn-waves. By the 3D tomographic investigations that have been done here for the crust and the upper mantle, considering the influence of anisotropy, a gap for the investigations in Europe has been closed. These investigations have been done with the SSH-Inversionprogram of Prof. Dr. M. Koch, which is able to compute simultaneously the seismic structure and hypocenters. For the investigation, a dataset has been available with recordings between the years 1975 to 2003 with a total of 60249 P- and 54212 S-phase records of 10028 seismic events. At the beginning, a precise analysis of the residuals (RES, the difference between calculated and observed arrivaltime) has been done which confirmed the existence of anisotropy for Pn-phases. The recognized sinusoidal distribution has been compensated by an extension of the SSH-program by an ellipse with a slow and rectangular fast axis with azimuth to correct the Pn-velocities. The azimuth of the fast axis has been fixed by the application of the simultaneous inversion at 25° - 27° with a variation of the velocities at +- 2.5 about an average value at 8 km/s. This new value differs from the old one at 35°, recognized in the initial residual analysis. This depends on the new computed hypocenters together with the structure. The application of the elliptical correction has resulted in a better fit of the vertical layered 1D-Model, compared to the results of preceding seismological experiments and 1D and 2D investigations. The optimal result of the 1D-inversion has been used as initial starting model for the 3D-inversions to compute the three dimensional picture of the seismic structure of the Crust and Upper Mantle. The simultaneous inversion has showed an optimization of the relocalization of the hypocenters and the reconstruction of the seismic structure in comparison to the geology and tectonic, as described by other investigations. The investigations for the seismic structure and the relocalization have been confirmed by several different tests. First, synthetic traveltime data are computed with an anisotropic variation and inverted with and without anisotropic correction. Further, tests with randomly disturbed hypocenters and traveltime data have been proceeded to verify the influence of the initial values onto the relocalization accuracy and onto the seismic structure and to test for a further improvement by the application of the anisotropic correction. Finally, the results of the work have been applied onto the Waldkirch earthquake in 2004 to compare the isotropic and the anisotropic relocalization with the initial optimal one to verify whether there is some improvement.
Resumo:
We present a statistical image-based shape + structure model for Bayesian visual hull reconstruction and 3D structure inference. The 3D shape of a class of objects is represented by sets of contours from silhouette views simultaneously observed from multiple calibrated cameras. Bayesian reconstructions of new shapes are then estimated using a prior density constructed with a mixture model and probabilistic principal components analysis. We show how the use of a class-specific prior in a visual hull reconstruction can reduce the effect of segmentation errors from the silhouette extraction process. The proposed method is applied to a data set of pedestrian images, and improvements in the approximate 3D models under various noise conditions are shown. We further augment the shape model to incorporate structural features of interest; unknown structural parameters for a novel set of contours are then inferred via the Bayesian reconstruction process. Model matching and parameter inference are done entirely in the image domain and require no explicit 3D construction. Our shape model enables accurate estimation of structure despite segmentation errors or missing views in the input silhouettes, and works even with only a single input view. Using a data set of thousands of pedestrian images generated from a synthetic model, we can accurately infer the 3D locations of 19 joints on the body based on observed silhouette contours from real images.
Resumo:
We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc
Resumo:
This paper describes a new method for reconstructing 3D surface using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed object's surface is represented a set of triangular facets. We empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points optimally cluster closely on a highly curved part of the surface and are widely, spread on smooth or fat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not undersampled or underrepresented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object.
Resumo:
This paper describes a new method for reconstructing 3D surface points and a wireframe on the surface of a freeform object using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed surface points are frontier points and the wireframe is a network of contour generators. Both of them are reconstructed by pairing apparent contours in the 2D images. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The unique pattern of the reconstructed points and contours may be used in 31) object recognition and measurement without computationally intensive full surface reconstruction. The results are obtained from both computer-generated and real objects. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a method for reconstructing 3D frontier points, contour generators and surfaces of anatomical objects or smooth surfaces from a small number, e. g. 10, of conventional 2D X-ray images. The X-ray images are taken at different viewing directions with full prior knowledge of the X-ray source and sensor configurations. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the number of viewing directions is fixed and the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The technique may be used not only in medicine but also in industrial applications.
Resumo:
Geometric accuracy of a close-range photogrammetric system is assessed in this paper considering surface reconstruction with structured light as its main purpose. The system is based on an off-the-shelf digital camera and a pattern projector. The mathematical model for reconstruction is based on the parametric equation of the projected straight line combined with collinearity equations. A sequential approach for system calibration was developed and is presented. Results obtained from real data are also presented and discussed. Experiments with real data using a prototype have indicated 0.5mm of accuracy in height determination and 0.2mm in the XY plane considering an application where the object was 1630mm distant from the camera.
Resumo:
[EN] In this paper we present a variational technique for the reconstruction of 3D cylindrical surfaces. Roughly speaking by a cylindrical surface we mean a surface that can be parameterized using the projection on a cylinder in terms of two coordinates, representing the displacement and angle in a cylindrical coordinate system respectively. The starting point for our method is a set of different views of a cylindrical surface, as well as a precomputed disparity map estimation between pair of images. The proposed variational technique is based on an energy minimization where we balance on the one hand the regularity of the cylindrical function given by the distance of the surface points to cylinder axis, and on the other hand, the distance between the projection of the surface points on the images and the expected location following the precomputed disparity map estimation between pair of images. One interesting advantage of this approach is that we regularize the 3D surface by means of a bi-dimensio al minimization problem. We show some experimental results for large stereo sequences.
Resumo:
In 3D human movement analysis performed using stereophotogrammetric systems and skin markers, bone pose can only be estimated in an indirect fashion. During a movement, soft tissue deformations make the markers move with respect to the underlying bone generating soft tissue artefact (STA). STA has devastating effects on bone pose estimation and its compensation remains an open question. The aim of this PhD thesis was to contribute to the solution of this crucial issue. Modelling STA using measurable trial-specific variables is a fundamental prerequisite for its removal from marker trajectories. Two STA model architectures are proposed. Initially, a thigh marker-level artefact model is presented. STA was modelled as a linear combination of joint angles involved in the movement. This model was calibrated using ex-vivo and in-vivo STA invasive measures. The considerable number of model parameters led to defining STA approximations. Three definitions were proposed to represent STA as a series of modes: individual marker displacements, marker-cluster geometrical transformations (MCGT), and skin envelope shape variations. Modes were selected using two criteria: one based on modal energy and another on the selection of modes chosen a priori. The MCGT allows to select either rigid or non-rigid STA components. It was also empirically demonstrated that only the rigid component affects joint kinematics, regardless of the non-rigid amplitude. Therefore, a model of thigh and shank STA rigid component at cluster-level was then defined. An acceptable trade-off between STA compensation effectiveness and number of parameters can be obtained, improving joint kinematics accuracy. The obtained results lead to two main potential applications: the proposed models can generate realistic STAs for simulation purposes to compare different skeletal kinematics estimators; and, more importantly, focusing only on the STA rigid component, the model attains a satisfactory STA reconstruction with less parameters, facilitating its incorporation in an pose estimator.
Resumo:
To assess the diagnostic accuracy, image quality, and radiation dose of an iterative reconstruction algorithm compared with a filtered back projection (FBP) algorithm for abdominal computed tomography (CT) at different tube voltages.
Resumo:
This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.