963 resultados para 3D laser scanner
Resumo:
The photosensitivity of GeSx binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8x10−3 and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 – 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, a method is proposed to refine the LASER 3D roofs geometrically by using a high-resolution aerial image and Markov Random Field (MRF) models. In order to do so, a MRF description for grouping straight lines is developed, assuming that each projected side contour and ridge is topologically correct and that it is only necessary to improve its accuracy. Although the combination of laser data with data from image is most justified for refining roof contour, the structure of ridges can give greater robustness in the topological description of the roof structure. The MRF model is formulated based on relationships (length, proximity, and orientation) between the straight lines extracted from the image and projected polygon and also on retangularity and corner injunctions. The energy function associated with MRF is minimized by the genetic algorithm optimization method, resulting in the grouping of straight lines for each roof object. Finally, each grouping of straight lines is topologically reconstructed based on the topology of the corresponding LASER scanning polygon projected onto the image-space. The results obtained were satisfactory. This method was able to provide polygons roof refined buildings in which most of its contour sides and ridges were geometrically improved.
Resumo:
The use of computer-assisted technologies such as CAD - Computed Aided Design, CAM - Computed Aided Manufacturing, CAE - Computed Aided Engineering and CNC - Computed Numerical Control, are priorities in engineering and product designers. However, the dimensional measurement between the virtual and the real product design requires research, and dissemination procedures among its users. This work aims to use these technologies, through analysis and measurement of a CNC milling machine, designed and assembled in the university. Through the use of 3D scanning, and analyzing images of the machined samples, and its original virtual files, it was possible to compare the sizes of these samples in counterposition to the original virtual dimensions, we can state that the distortions between the real and virtual, are within acceptable limits for this type of equipment. As a secondary objective, this work seeks to disseminate and make more accessible the use of these technologies.
Resumo:
Tailoring properties of materials by femtosecond laser processing has been proposed in the last decade as a powerful approach for technological applications, ranging from optics to biology. Although most of the research output in this field is related to femtosecond laser processing of single either organic or inorganic materials, more recently a similar approach has been proposed to develop advanced hybrid nanomaterials. Here, we report results on the use of femtosecond lasers to process hybrid nanomaterials, composed of polymeric and glassy matrices containing metal or semiconductor nanostructures. We present results on the use of femtosecond pulses to induce Cu and Ag nanoparticles in the bulk of borate and borosilicate glasses, which can be applied for a new generation of waveguides. We also report on 3D polymeric structures, fabricated by two-photon polymerization, containing Au and ZnO nanostructures, with intense two-photon fluorescent properties. The approach based on femtosecond laser processing to fabricate hybrid materials containing metal or semiconductor nanostructures is promising to be exploited for optical sensors and photonics devices.
Resumo:
The laser driven ion acceleration is a burgeoning field of resarch and is attracting a growing number of scientists since the first results reported in 2000 obtained irradiating thin solid foils by high power laser pulses. The growing interest is driven by the peculiar characteristics of the produced bunches, the compactness of the whole accelerating system and the very short accelerating length of this all-optical accelerators. A fervent theoretical and experimental work has been done since then. An important part of the theoretical study is done by means of numerical simulations and the most widely used technique exploits PIC codes (“Particle In Cell'”). In this thesis the PIC code AlaDyn, developed by our research group considering innovative algorithms, is described. My work has been devoted to the developement of the code and the investigation of the laser driven ion acceleration for different target configurations. Two target configurations for the proton acceleration are presented together with the results of the 2D and 3D numerical investigation. One target configuration consists of a solid foil with a low density layer attached on the irradiated side. The nearly critical plasma of the foam layer allows a very high energy absorption by the target and an increase of the proton energy up to a factor 3, when compared to the ``pure'' TNSA configuration. The differences of the regime with respect to the standard TNSA are described The case of nearly critical density targets has been investigated with 3D simulations. In this case the laser travels throughout the plasma and exits on the rear side. During the propagation, the laser drills a channel and induce a magnetic vortex that expanding on the rear side of the targer is source of a very intense electric field. The protons of the plasma are strongly accelerated up to energies of 100 MeV using a 200PW laser.
Resumo:
In the race to obtain protons with higher energies, using more compact systems at the same time, laser-driven plasma accelerators are becoming an interesting possibility. But for now, only beams with extremely broad energy spectra and high divergence have been produced. The driving line of this PhD thesis was the study and design of a compact system to extract a high quality beam out of the initial bunch of protons produced by the interaction of a laser pulse with a thin solid target, using experimentally reliable technologies in order to be able to test such a system as soon as possible. In this thesis, different transport lines are analyzed. The first is based on a high field pulsed solenoid, some collimators and, for perfect filtering and post-acceleration, a high field high frequency compact linear accelerator, originally designed to accelerate a 30 MeV beam extracted from a cyclotron. The second one is based on a quadruplet of permanent magnetic quadrupoles: thanks to its greater simplicity and reliability, it has great interest for experiments, but the effectiveness is lower than the one based on the solenoid; in fact, the final beam intensity drops by an order of magnitude. An additional sensible decrease in intensity is verified in the third case, where the energy selection is achieved using a chicane, because of its very low efficiency for off-axis protons. The proposed schemes have all been analyzed with 3D simulations and all the significant results are presented. Future experimental work based on the outcome of this thesis can be planned and is being discussed now.
Resumo:
Theories and numerical modeling are fundamental tools for understanding, optimizing and designing present and future laser-plasma accelerators (LPAs). Laser evolution and plasma wave excitation in a LPA driven by a weakly relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, is studied analytically in 3D including the effects of pulse steepening and energy depletion. At higher laser intensities, the process of electron self-injection in the nonlinear bubble wake regime is studied by means of fully self-consistent Particle-in-Cell simulations. Considering a non-evolving laser driver propagating with a prescribed velocity, the geometrical properties of the non-evolving bubble wake are studied. For a range of parameters of interest for laser plasma acceleration, The dependence of the threshold for self-injection in the non-evolving wake on laser intensity and wake velocity is characterized. Due to the nonlinear and complex nature of the Physics involved, computationally challenging numerical simulations are required to model laser-plasma accelerators operating at relativistic laser intensities. The numerical and computational optimizations, that combined in the codes INF&RNO and INF&RNO/quasi-static give the possibility to accurately model multi-GeV laser wakefield acceleration stages with present supercomputing architectures, are discussed. The PIC code jasmine, capable of efficiently running laser-plasma simulations on Graphics Processing Units (GPUs) clusters, is presented. GPUs deliver exceptional performance to PIC codes, but the core algorithms had to be redesigned for satisfying the constraints imposed by the intrinsic parallelism of the architecture. The simulation campaigns, run with the code jasmine for modeling the recent LPA experiments with the INFN-FLAME and CNR-ILIL laser systems, are also presented.
Resumo:
For crime scene investigation in cases of homicide, the pattern of bloodstains at the incident site is of critical importance. The morphology of the bloodstain pattern serves to determine the approximate blood source locations, the minimum number of blows and the positioning of the victim. In the present work, the benefits of the three-dimensional bloodstain pattern analysis, including the ballistic approximation of the trajectories of the blood drops, will be demonstrated using two illustrative cases. The crime scenes were documented in 3D, using the non-contact methods digital photogrammetry, tachymetry and laser scanning. Accurate, true-to-scale 3D models of the crime scenes, including the bloodstain pattern and the traces, were created. For the determination of the areas of origin of the bloodstain pattern, the trajectories of up to 200 well-defined bloodstains were analysed in CAD and photogrammetry software. The ballistic determination of the trajectories was performed using ballistics software. The advantages of this method are the short preparation time on site, the non-contact measurement of the bloodstains and the high accuracy of the bloodstain analysis. It should be expected that this method delivers accurate results regarding the number and position of the areas of origin of bloodstains, in particular the vertical component is determined more precisely than using conventional methods. In both cases relevant forensic conclusions regarding the course of events were enabled by the ballistic bloodstain pattern analysis.
Resumo:
The three-dimensional documentation of footwear and tyre impressions in snow offers an opportunity to capture additional fine detail for the identification as present photographs. For this approach, up to now, different casting methods have been used. Casting of footwear impressions in snow has always been a difficult assignment. This work demonstrates that for the three-dimensional documentation of impressions in snow the non-destructive method of 3D optical surface scanning is suitable. The new method delivers more detailed results of higher accuracy than the conventional casting techniques. The results of this easy to use and mobile 3D optical surface scanner were very satisfactory in different meteorological and snow conditions. The method is also suitable for impressions in soil, sand or other materials. In addition to the side by side comparison, the automatic comparison of the 3D models and the computation of deviations and accuracy of the data simplify the examination and delivers objective and secure results. The results can be visualized efficiently. Data exchange between investigating authorities at a national or an international level can be achieved easily with electronic data carriers.
Resumo:
Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes. Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Resumo:
Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.
Resumo:
A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).
Resumo:
Geochemical and mineralogical proxies for paleoenvironmental conditions have the underlying assumption that climate variations have an impact on terrestrial weathering conditions. Varying properties of terrigenous sediments deposited at sea are therefore often interpreted in terms of paleoenvironmental change. Also in gravity core GeoB9307-3 (18° 33.99' S, 37° 22.89' E), located off the Zambezi River, environmental changes during Heinrich Stadial 1 (HS 1) and the Younger Dryas (YD) are accompanied by changing properties of the terrigenous sediment fraction. Our study focuses on the relationship of variability in the hydrological system and changes in the magnetic properties, major element geochemistry and granulometry of the sediments. We propose that changes in bulk sedimentary properties concur with environmental change, although not as a direct response of climate driven pedogenic processes. Spatial varying rainfall intensities on a sub-basin scale modify sediment export from different parts of the Zambezi River basin. During humid phases, such as HS 1 and the YD, sediment was mainly exported from the coastal areas, while during more arid phases sediments mirror the hinterland soil and lithological properties and are likely derived from the northern Shire sub-basin. We propose that a de-coupling of sedimentological and organic signals with variable discharge and erosional activity can occur.