944 resultados para 3-AMINO ALKYLATED INDOLES
Resumo:
The present work deals with the anticancer effect of benzimidazole derivatives associated with the pyridine framework. By varying the functional group at N-terminal of the benzimidazole by different L-amino acids, several 2-(4-(2,2,2-trifluoroethoxy)-3-methylpyridin-2-ylthio)-1H-benzo[d]imid azole derivatives 9(a-j) were synthesized. Their chemical structures were confirmed by H-1 NMR, IR and mass spectroscopic techniques. The synthesized compounds were examined for their antiproliferative effects against human leukemia cell lines, K562 and CEM. The preliminary results showed most of the derivatives had moderate antitumor activity. Compound 9j containing cysteine residue exhibited good inhibition compared to other amino acid resides. In addition DNA fragmentation results suggest that 9j is more cytotoxic and able to induce apoptosis.
Resumo:
The crystal structure of 5'-amino-5'-deoxyadenosine (5'-Am.dA) p-toluenesulfonate has been determined by X-ray crystallographic methods. It belongs to the orthorhombic space group P2(1)2(1)2(1) with a = 7.754(3)Angstrom, b = 8.065(1)Angstrom and c = 32.481(2)Angstrom. This nucleoside side shows a syn conformation about the glycosyl bond and C2'-endo-C3'-exo puckering for the ribose sugar. The orientation of N5' atom is gauche-trans about the exocyclic C4'-C5' bond. The amino nitrogen N5' forms a trifurcated hydrogen bond with N3, O9T and O4' atoms. Adenine bases form A.A.A triplets through hydrogen bonding between N6, N7 and N1 atoms of symmetry related nucleoside molecules.
Resumo:
A wealth of information available from x-ray crystallographic structures of enzyme-ligand complexes makes it possible to study interactions at the molecular level. However, further investigation is needed when i) the binding of the natural substrate must be characterized, because ligands in the stable enzyme-ligand complexes are generally inhibitors or the analogs of substrate and transition state, and when ii) ligand binding is in part poorly characterized. We have investigated these aspects i? the binding of substrate uridyl 3',5'-adenosine (UpA) to ribonuclease A (RNase A). Based on the systematically docked RNase A-UpA complex resulting from our previous study, we have undertaken a molecular dynamics simulation of the complex with solvent molecules. The molecular dynamics trajectories of this complex are analyzed to provide structural explanations for varied experimental observations on the ligand binding at the B2 subsite of ribonuclease A. The present study suggests that B2 subsite stabilization can be effected by different active site groups, depending on the substrate conformation. Thus when adenosine ribose pucker is O4'-endo, Gln69 and Glu111 form hydrogen-bonding contacts with adenine base, and when it is C2'-endo, Asn71 is the only amino acid residue in direct contact with this base. The latter observation is in support of previous mutagenesis and kinetics studies. Possible roles for the solvent molecules in the binding subsites are described. Furthermore, the substrate conformation is also examined along the simulation pathway to see if any conformer has the properties of a transition state. This study has also helped us to recognize that small but concerted changes in the conformation of the substrate can result in substrate geometry favorable for 2',3' cyclization. The identified geometry is suitable for intraligand proton transfer between 2'-hydroxyl and phosphate oxygen atom. The possibility of intraligand proton transfer as suggested previously and the mode of transfer before the formation of cyclic intermediate during transphosphorylation are discussed.
Resumo:
The crystal and molecular structure of N-benzyloxycarbonyl-a-aminoisobutyryl-L-prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212-21. Cell dimensions are a = 7.705 A, b = 11.365 A, and c = 21.904 A. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 - 1 intramolecular N-H--0 hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type 111 P-turn conformation, with 42 = -51.0°, +* = -39.7",&j = -65.0', $3 = -25.4'. An unusual feature is the occurrence of the proline residue at position 3 of the P-turn. The observed structure supports the view that Aib residues initiate the formation of type 111 @-turn conformations. The pyrrolidine ring is puckered in Cy-exo fashion.
Resumo:
The title compound, C14H18BrNO3, adopts an extended conformation, with all of the main-chain torsion angles associated with the ester and amino groups close to trans. In the crystal, inversion dimers linked by pairs of N-H center dot center dot center dot O hydrogen bonds are observed.
Resumo:
In the molecule of the title compound, C20H23NO3, the bulky methoxyphenyl substituents at the equatorial 2,6-positions crowd the vicinity of the equatorial amino H atom and prevent it from forming intermolecular hydrogen bonds. The piperidine ring adopts a distorted chair conformation.
Resumo:
Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (I), [Ni2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (II), [Co2(H2O)(μ3-OH)2(C8H5NO4)] (III), and [Ni2(H2O)(μ3-OH)2(C8H5NO4)] (IV). Compounds I and II are isostructural, having anion-deficient CdCl2 related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M−O(H)−M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating−cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M2+ (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV−vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.
Resumo:
Ternary copper(II) complexes [Cu(L-trp)(B)(H2O)](NO3) ( 1–3) and [Cu(L-phe)(B)(H2O)](NO3) ( 4–6) of L-tryptophan (L-trp) and L-phenylalanine (L-phe) having phenanthroline bases (B), viz. 1,10-phenanthroline (phen, 1 and 4), dipyrido[3,2-d:2,3-f]quinoxaline (dpq, 2 and 5) and dipyrido[3,2-a:2,3-c]phenazine (dppz, 3 and 6), were prepared and characterized by physico-chemical techniques. Complexes 3 and 6 were structurally characterized by X-ray crystallography and show the presence of a square pyramidal (4 + 1) CuN3O2 coordination geometry in which the N,O-donor amino acid (L-trp or L-phe) and N,N-donor phenanthroline base bind at the equatorial plane with an aqua ligand coordinated at the elongated axial site. Complex 3 shows significant distortion from the square pyramidal geometry and a strong intramolecular – stacking interaction between the pendant indole ring of L-trp and the planar dppz aromatic moiety. All the complexes display good binding propensity to the calf thymus DNA giving an order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding constant (Kb) values are in the range of 2.1 × 104–1.1 × 106 mol-1 with the binding site size (s) values of 0.17–0.63. The phen and dpq complexes are minor groove binders while the dppz analogues bind at the DNA major groove. Theoretical DNA docking studies on 2 and 3 show the close proximity of two photosensitizers, viz. the indole moiety of L-trp and the quinoxaline/phenazine of the dpq/dppz bases, to the complementary DNA strands. Complexes 2 and 3 show oxidative DNA double strand breaks (dsb) of supercoiled (SC) DNA forming a significant quantity of linear DNA along with the nicked circular (NC) form on photoexposure to UV-A light of 365 nm and red light of 647.1 nm (Ar–Kr laser). Complexes 1, 5 and 6 show only single strand breaks (ssb) forming NC DNA. The red light induced DNA cleavage involves metal-assisted photosensitization of L-trp and dpq/dppz base resulting in the formation of a reactive singlet oxygen (1O2) species.
Resumo:
he crystal structure of 12 peptides containing the conformationally constrained 1-(aminomethyl)cyclohexaneacetic acid, gabapentin (Gpn), are reported. In all the 39 Gpn residues conformationally characterized so far, the torsion angles about the C-alpha-C-beta and C-beta-C-gamma bonds are restricted to the gauche conformation (+/- 60 degrees). The Gpn residue is constrained to adopt folded conformations resulting in the formation of intramolecularly hydrogen-bonded structures even in short peptides. The peptides Boc-Ac(6)c-Gpn-OMe 1 and Boc-Gpn-Aib-Gpn-Aib-OMe 2 provide examples of C-7 conformation; peptides Boc-Gpn-Aib-OH 3, Boc-Ac(6)c-Gpn-OH 4, Boc-Val-Pro-Gpn-OH 5, Piv-Pro-Gpn-Val-OMe 6, and Boc-Gpn-Gpn-Leu-OMe 7 provide examples of C-9 conformation; peptide Boc-Ala-Aib-Gpn-Aib-Ala-OMe 8 provides an example of C-12 conformation and peptides Boc-beta Leu-Gpn-Val-OMe 9 and Boc-beta Phe-Gpn-Phe-OMe 10 provide examples of C-13 conformation. Gpn peptides provide examples of backbone expanded mimetics for canonical alpha-peptide turns like the gamma (C-7) and the beta (C-10) turns. The hybrid beta gamma sequences provide an example of a mimetic of the C-13 alpha-turn formed by three contiguous alpha-amino acid residues. Two examples of folded tripeptide structures, Boc-Gpn-beta Phe-Leu-OMe 11 and Boc-Aib-Gpn-beta Phg-NHMe 12, lacking internal hydrogen bonds are also presented. An analysis of available Gpn residue conformations provides the basis for future design of folded hybrid peptides.
Resumo:
Understanding the key factors that influence the interaction preferences of amino acids in the folding of proteins have remained a challenge. Here we present a knowledge-based approach for determining the effective interactions between amino acids based on amino acid type, their secondary structure, and the contact based environment that they find themselves in the native state structure as measured by their number of neighbors. We find that the optimal information is approximately encoded in a 60 x 60 matrix describing the 20 types of amino acids in three distinct secondary structures (helix, beta strand, and loop). We carry out a clustering scheme to understand the similarity between these interactions and to elucidate a nonredundant set. We demonstrate that the inferred energy parameters can be used for assessing the fit of a given sequence into a putative native state structure.
Resumo:
In the title compound, C19H22N4O2, the tetrahydropyrimidine ring adopts an envelope conformation (with the N atom connected to the benzyl group representing the flap). This benzyl group occupies a quasi-axial position. The two benzyl groups lie over the tetrahydropyridimidine ring. The amino group is a hydrogen-bond donor to the nitro group.
Resumo:
The induction of nitrate reductase (NADPH:nitrate oxidoreductase, EC 1.6.6.3) by nitrate in Neurospora crassa and its control by amino acids have been studied. The growth-inhibitory amino acids, isoleucine and cysteine as well as the growth-promotory ones, glutamine, asparagine, arginine, histidine and NH4+, repress nitrate reductase effectively. Methionine, tryptophan, proline, aspartic acid and glutamic acid exert little control on nitrate reductase. The repression of nitrate reductase by cysteine, isoleucine, glutamine and asparagine is accompanied by inactivation of the enzyme present initially. The nitrate-induced NADPH-cytochrome c reductase (NADPH:cytochrome c oxidoreductase, EC 1.6.2.3) is also repressed by amino acids which control nitrate reductase, providing further evidence to show that these two enzyme activities may reside in the same protein. Catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6) has been found to be induced subsequent to the induction of nitrate reductase by nitrate in N. crassa. The induction of catalase is probably by its substrate H2O2 which would be formed by the interaction of the flavine component of nitrate reductase with oxygen. The amino acids which control nitrate reductase, repress catalase also. The catalase level appears to be determined by the nitrate reductase activity of the mycelia.
Resumo:
The colour reaction between 3-phenyl-2-thiohydantoin and ammonia is studied quantitatively. Determinations of 0.1–0.6 μmoles of 3-phenyl-2-thiohydantoin are possible with a precision close to 2%. In analyses of amino acid mixtures for glycine after conversion to 3-phenyl-2-thiohydantoin, only derivatives of serine and threonine interfere to a slight extent. The specificity of the primary colour reaction with ammonia, and the structural requirements for it are discussed; a structure for the pigment species is proposed.
Resumo:
1. The polarographic behaviour of amino-acid complexes of zinc has been studied using seven amino acids as complexing agents. 2. The effect of varying the pH of the base solution and the concentration of amino-acid anion on the polarographic behaviour of zinc in these solutions have indi cated the formation of twelve amino-acid complexes. The stability constants could not be calculated due to the irreversible nature of the waves. 3. The effect of sodium hydroxide, sodium carbonate, and ammonia on the polarographic behaviour of zinc has been investigated. The results can be interpreted as due to the formation of mixed complexes in many systems. 4. Amino-acid base solutions have been found to be suitable for the polarographic estimation of zinc.
Resumo:
1. A detailed polarographic study of cadmium has been made employing glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine as complexing agents at various pH values. The effect of incorporating sodium hydroxide, sodium carbonate and ammonium nitrate + ammonium hydroxide, on the polarographic behaviour of amino acid complexes of cadmium has also been investigated. 2. The reduction process has been found to be reversible in all systems. 3. The small shifts in the half-wave potentials noticed due to increase in the concentration of sodium hydroxide and sodium carbonate in presence of amino acids have been explained on the basis of formation of mixtures of pure and mixed amino acid complexes of cadmium. Mixed complexes have also been noticed in presence of ammonium hydroxide and ammonium nitrate and amino acids. 4. Polarographic evidence has been obtained for the formation of over 30 pure and mixed complexes. The dissociation constant Kd, the Δ F° value for the dissociation, and standard potential value for the formation, of each complex have been computed. 5. It has been found that cadmium can be polarographically estimated in amino acid solutions.