986 resultados para 3 dB CP bandwidth
Resumo:
A series of C-3 alkyl and arylalky 2,3-dideoxy hex-2-enopyranoside derivatives were synthesized by Morita-Baylis-Hillman reaction using enulosides 4, 5 and 6 and various aliphatic and aromatic aldehydes. The compounds were evaluated in vitro for the complete inhibition of growth of Mycobacterium tuberculosis H37Rv. They exhibited moderate to good activity in the range of 25-1.56 µg/mL. Among these, 4d, 4h, 5c and 4hr showed activity at minimum inhibitory concentrations, 3.12, 6.25, 1.56 and 1.56µg/mL, respectively. These compounds were safe against cytotoxicity in VERO cell line and mouse macrophage cell line J 744A.1. A QSAR analysis by CP-MLR with alignment-free 3D-descriptors indicated the relevance of structure space comparable to the minimum energy conformation (from conformational analysis) of 5c to the activity. The study indicates that the compounds attaining conformational space 5c and reflecting some symmetry, minimum eccentricity and closely placed geometric and electronegativity centers therein are favorable for activity.
Resumo:
This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.
Resumo:
Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.
Resumo:
We present SUSY_FLAVOR version 2 — a Fortran 77 program that calculates low-energy flavor observables in the general R-parity conserving MSSM. For a set of MSSM parameters as input, the code gives predictions for: 1. Electric dipole moments of the leptons and the neutron. 2. Anomalous magnetic moments (i.e. g − 2) of the leptons. 3. Radiative lepton decays (μ → eγ and τ → μγ , eγ ). 4. Rare Kaon decays (K0 L → π0 ¯νν and K+ → π+ ¯νν). 5. Leptonic B decays (Bs,d → l+l−, B → τ ν and B → Dτ ν). 6. Radiative B decays (B → ¯ Xsγ ). 7. ΔF = 2 processes ( ¯ K0–K0, ¯D–D, ¯Bd–Bd and ¯Bs–Bs mixing). Comparing to SUSY_FLAVOR v1, where the matching conditions were calculated strictly at one-loop level, SUSY_FLAVOR v2 performs the resummation of all chirally enhanced corrections, i.e. takes into account the enhanced effects from tan β and/or large trilinear soft mixing terms to all orders in perturbation theory. Also, in SUSY_FLAVOR v2 new routines calculation of B → (D)τ ν, g − 2, radiative lepton decays and Br(l → l′γ ) were added. All calculations are done using exact diagonalization of the sfermion mass matrices. The program can be obtained from http://www.fuw.edu.pl/susy_flavor.
Resumo:
Besetzung: Coro S, Coro A, Coro T, Coro B, Vl 1 2, Va, Trp 1 2, Timp, Org
Resumo:
The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from δCP and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5δ C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has ~ 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract δCP from the data, the first LBNO phase can convincingly give evidence for CPV on the 3δ C.L. using today’s knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.
Resumo:
The reactions of 4,4′-bipyridine with selected trinuclear triangular copper(II) complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2Lx], [pz = pyrazolate anion, R = CH3(CH2)n (2 ≤ n ≤ 5); L = H2O, MeOH, EtOH] yielded a series of 1D coordination polymers (CPs) based on the repetition of [Cu3(μ3-OH)(μ-pz)3] secondary building units joined by bipyridine. The CPs were characterized by conventional analytical methods (elemental analyses, ESI-MS, IR spectra) and single crystal XRD determinations. An unprecedented 1D CP, generated through the bipyridine bridging hexanuclear copper clusters moieties, two 1D CPs presenting structural analogies, and two monodimensional tapes having almost exactly superimposable structures, were obtained. In one case, the crystal packing makes evident the presence of small, not-connected pores, accounting for ca. 6% of free cell volume.
Resumo:
Rexinoids are synthetic agonists for the retinoid X receptors (RXRs), a member of the nuclear receptor family of ligand-activated transcription factors. Rexinoids have been shown to lower serum glucose and insulin levels in animal models of type 2 diabetes. However the mechanisms that are responsible for the insulin-sensitizing action of rexinoids are largely unknown. Skeletal muscle accounts for the majority of insulin-regulated whole-body glucose disposal and impaired insulin action in muscle is an important contributor to the pathophysiology of type 2 diabetes. Glucose transport is a rate-limiting step in glucose utilization. The goal of these studies is to examine the mechanisms of the anti-diabetic activity of rexinoids in skeletal muscle of diabetic db/db mice. The results we have obtained showed that treatment of db/db mice with rexinoids for two weeks resulted in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Insulin stimulates glucose transport in muscle via the regulation of both the insulin receptor substrate-1 (IRS-1)/Akt pathway and the Cbl-associated protein (CAP)/Cbl pathway. Rexinoids increased the insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation without effects on the activity of the CAP/Cbl pathway. The effects of rexinoids on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Serine 307 phosphorylation as well as qualitative and quantitative alterations in the fatty acyl-CoAs present within the muscle cells. In addition, rexinoids increased the expression of uncoupling protein 3 (UCP3) and activation of AMPK in diabetic muscle. This effect may also enhance the IRS-1/Akt signaling. We believe that it is the concerted activation of the IRS-1/Akt and AMPK signaling systems, a pharmacological mechanism that as far as we know, is unique to rexinoids, that results in the anti-diabetic effects of these drugs. Our results also suggest that the glucose-lowering mechanism of rexinoids is distinct from that of the thiazolidinediones (TZDs), peroxisome proliferator-activated receptor γ (PPARγ) agonists with well-characterized anti-diabetic activity. Rexinoids appear to represent a novel class of insulin sensitizers, with potential applications for the treatment of type 2 diabetes. ^