995 resultados para 1995_12020159 Fish-1
Resumo:
(PDF contains 6 pages.)
Resumo:
(PDF contains 1 page.)
Resumo:
(PDF contains 1 page.)
Resumo:
One goal of Gray’s Reef National Marine Sanctuary (NMS) is to protect the unique community found within the Sanctuary’s boundaries. An understanding of the ecological interactions, including trophic structure, among these organisms is necessary to realize this goal. Therefore, diet information for 184 fish species was summarized from 113 published studies. Among the fish included are 84 fish species currently known to reside in Gray’s Reef NMS. The locations of these studies ranged from the Atlantic Ocean off the coast of the northeast United States to northern Brazil, the Gulf of Mexico, and the Caribbean. All of the species described in this bibliography occur in the southeast United States and are, therefore, current or potential residents of Gray’s Reef National Marine Sanctuary. Each entry includes the objectives, brief methods, and conclusions of the article. The bibliography is also indexed by species. (PDF contains 64 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
The Flower Garden Banks are topographic features on the edge of the continental shelf in the northwest Gulf of Mexico. These banks are approximately 175 km southeast of Galveston, Texas at 28° north latitude and support the northernmost coral reefs on the North American continental shelf. The East and West Flower Garden Banks (EFG and WFG) and Stetson Bank, a smaller sandstone bank approximately 110 km offshore, are managed and protected as the Flower Garden Banks National Marine Sanctuary (FGBNMS). As part of a region-wide initiative to assess coral reef condition, the benthic and fish communities of the EFG and WFG were assessed using the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol. The AGRRA survey was conducted during a week-long cruise in August 1999 that was jointly sponsored by the FGBNMS and the Reef Environmental Education Foundation (REEF). A total of 25 coral transects, 132 algal quadrats, 24 fish transects, and 26 Roving Diver (REEF) surveys were conducted. These surveys revealed reefs with high coral cover, dominated by large, healthy corals, little macroalgae, and healthy fish populations. The percent live coral cover was 53.9 and 48.8 at the WFG and EFG, respectively, and the average colony diameter was 93 and 81 cm. Fish diversity was lower than most Caribbean reefs, but large abundances and size of many species reflected the low fishing pressure on the banks. The benthic and fish assemblages at the EFG and WFG were similar. Due to its near pristine conditions, the FGB data will prove to be a valuable component in the AGRRA database and its resulting scale of reef condition for the region. (PDF contains 22 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 6 pages.)
Resumo:
(PDF contains 4 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
(PDF contains 3 pages.)
Resumo:
There is a clear need to develop fisheries independent methods to quantify individual sizes, density, and three dimensional characteristics of reef fish spawning aggregations for use in population assessments and to provide critical baseline data on reproductive life history of exploited populations. We designed, constructed, calibrated, and applied an underwater stereo-video system to estimate individual sizes and three dimensional (3D) positions of Nassau grouper (Epinephelus striatus) at a spawning aggregation site located on a reef promontory on the western edge of Little Cayman Island, Cayman Islands, BWI, on 23 January 2003. The system consists of two free-running camcorders mounted on a meter-long bar and supported by a SCUBA diver. Paired video “stills” were captured, and nose and tail of individual fish observed in the field of view of both cameras were digitized using image analysis software. Conversion of these two dimensional screen coordinates to 3D coordinates was achieved through a matrix inversion algorithm and calibration data. Our estimate of mean total length (58.5 cm, n = 29) was in close agreement with estimated lengths from a hydroacoustic survey and from direct measures of fish size using visual census techniques. We discovered a possible bias in length measures using the video method, most likely arising from some fish orientations that were not perpendicular with respect to the optical axis of the camera system. We observed 40 individuals occupying a volume of 33.3 m3, resulting in a concentration of 1.2 individuals m–3 with a mean (SD) nearest neighbor distance of 70.0 (29.7) cm. We promote the use of roving diver stereo-videography as a method to assess the size distribution, density, and 3D spatial structure of fish spawning aggregations.
Resumo:
Submersible surveys at numerous reefs and banks in the northwestern Gulf of Mexico (NWGOM) were conducted as part of the Sustainable Seas Expedition (SSE) during July/August 2002 to identify reef fish communities, characterize benthic habitats, and identify deep coral reef ecosystems. To identify the spatial extent of hard bottom reef communities, the Flower Garden Banks National Marine Sanctuary (FGBNMS) and the U.S. Geological Survey (USGS) mapped approximately 2000 km2 of the Northwestern Gulf of Mexico (NWGOM) continental shelf during June 2002 with high-resolution multibeam bathymetry. Previous investigations conducted on the features of interest (with the exceptions of East and West Flower Garden and Sonnier Banks, accessible by SCUBA) had not been conducted since the 1970s and 1980s, and did not have the use of high-resolution maps to target survey sites. The base maps were instrumental in navigating submersibles to specific features at each study site during the Sustainable Seas Expedition (SSE)—a submersible effort culminating from a partnership between the National Atmospheric and Oceanic Administration (NOAA) and the National Geographic Society (NGS). We report the initial findings of our submersible surveys, including habitat and reef fish diversity at McGrail, Alderdice, and Sonnier Banks. A total of 120 species and 40,724 individuals were identified from video surveys at the three banks. Planktivorous fishes constituted over 87% by number for the three banks, ranging from 81.4% at Sonnier Banks to 94.3% at Alderdice Bank, indicating a direct link to pelagic prey communities, particularly in the deep reef zones. High numbers of groupers, snappers, jacks, and other fishery species were observed on all three features. These sites were nominated as Habitat Areas of Particular Concern (HAPC) by the Gulf of Mexico Fishery Council in March 2004. Data obtained during this project will contribute to benthic habitat characterization and assessment of the associated fish communities through future SCUBA, ROV, and submersible missions, and allow comparisons to other deep reef ecosystems found throughout the Gulf of Mexico and western Atlantic Ocean.
Resumo:
As part of a multibeam and side scan sonar (SSS) benthic survey of the Marine Conservation District (MCD) south of St. Thomas, USVI and the seasonal closed areas in St. Croix—Lang Bank (LB) for red hind (Epinephelus guttatus) and the Mutton Snapper (MS) (Lutjanus analis) area—we extracted signals from water column targets that represent individual and aggregated fish over various benthic habitats encountered in the SSS imagery. The survey covered a total of 18 km2 throughout the federal jurisdiction fishery management areas. The complementary set of 28 habitat classification digital maps covered a total of 5,462.3 ha; MCDW (West) accounted for 45% of that area, and MCDE (East) 26%, LB 17%, and MS the remaining 13%. With the exception of MS, corals and gorgonians on consolidated habitats were significantly more abundant than submerged aquatic vegetation (SAV) on unconsolidated sediments or unconsolidated sediments. Continuous coral habitat was the most abundant consolidated habitat for both MCDW and MCDE (41% and 43% respectively). Consolidated habitats in LB and MS predominantly consisted of gorgonian plain habitat with 95% and 83% respectively. Coral limestone habitat was more abundant than coral patch habitat; it was found near the shelf break in MS, MCDW, and MCDE. Coral limestone and coral patch habitats only covered LB minimally. The high spatial resolution (0.15 m) of the acquired imagery allowed the detection of differing fish aggregation (FA) types. The largest FA densities were located at MCDW and MCDE over coral communities that occupy up to 70% of the bottom cover. Counts of unidentified swimming objects (USOs), likely representing individual fish, were similar among locations and occurred primarily over sand and shelf edge areas. Fish aggregation school sizes were significantly smaller at MS than the other three locations (MCDW, MCDE, and LB). This study shows the advantages of utilizing SSS in determining fish distributions and density.
Resumo:
Functional linkage between reef habitat quality and fish growth and production has remained elusive. Most current research is focused on correlative relationships between a general habitat type and presence/absence of a species, an index of species abundance, or species diversity. Such descriptive information largely ignores how reef attributes regulate reef fish abundance (density-dependent habitat selection), trophic interactions, and physiological performance (growth and condition). To determine the functional relationship between habitat quality, fish abundance, trophic interactions, and physiological performance, we are using an experimental reef system in the northeastern Gulf of Mexico where we apply advanced sensor and biochemical technologies. Our study site controls for reef attributes (size, cavity space, and reef mosaics) and focuses on the processes that regulate gag grouper (Mycteroperca microlepis) abundance, behavior and performance (growth and condition), and the availability of their pelagic prey. We combine mobile and fixed-active (fisheries) acoustics, passive acoustics, video cameras, and advanced biochemical techniques. Fisheries acoustics quantifies the abundance of pelagic prey fishes associated with the reefs and their behavior. Passive acoustics and video allow direct observation of gag and prey fish behavior and the acoustic environment, and provide a direct visual for the interpretation of fixed fisheries acoustics measurements. New application of biochemical techniques, such as Electron Transport System (ETS) assay, allow the in situ measurement of metabolic expenditure of gag and relates this back to reef attributes, gag behavior, and prey fish availability. Here, we provide an overview of our integrated technological approach for understanding and quantifying the functional relationship between reef habitat quality and one element of production – gag grouper growth on shallow coastal reefs.