744 resultados para 18F Labelling
Resumo:
Mestrado em Medicina Nuclear - Área de especialização: Tomografia por emissão de positrões
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Clin Sci (Lond). 2002 Nov;103(5):475-85
Resumo:
Reducing low-density lipoprotein cholesterol (LDL-C) levels using statins is associated with significant reductions in cardiovascular (CV) events in a wide range of patient populations. Although statins are generally considered to be safe, recent studies suggest they are associated with an increased risk of developing Type 2 diabetes (T2D). This led the US Food and Drug Administration (FDA) to change their labelling requirements for statins to include a warning about the possibility of increased blood sugar and HbA1c levels and the European Medicines Agency (EMA) to issue guidance on a small increased risk of T2D with the statin class. This review examines the evidence leading to these claims and provides practical guidance for primary care physicians on the use of statins in people with or at risk of developing T2D. Overall, evidence suggests that the benefits of statins for the reduction of CV risk far outweigh the risk of developing T2D, especially in individuals with higher CV risk. To reduce the risk of developing T2D, physicians should assess all patients for T2D risk prior to starting statin therapy, educate patients about their risks, and encourage risk-reduction through lifestyle changes. Whether some statins are more diabetogenic than others requires further study. Statin-treated patients at high risk of developing T2D should regularly be monitored for changes in blood glucose or HbA1c levels, and the risk of conversion from pre-diabetes to T2D should be reduced by intensifying lifestyle changes. Should a patient develop T2D during statin treatment, physicians should continue with statin therapy and manage T2D in accordance with relevant national guidelines.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master of Biomedical Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Because of the distance in time and the lack of testifying documents, one should be extremely careful when labelling portraits in medieval books of hours as donor portraits or owner portraits. There are, however, manuscripts that reveal their first owner within their decorative programme, and the Lamoignon Hours (Lisbon, Gulbenkian, ms LA 237) is one of these. This article aims to discuss the iconography of the three portraits found on f.165v, f.202v and f.286v, as well as the relevance of portraiture and heraldic insignia in books of hours and the significance of such content to the original owner and to those who possessed the book afterwards.
Resumo:
Tissue-to-tissue interfaces are commonly present in all tissues exhibiting structural, biological and chemical gradients serving a wide range of physiological functions. These interfaces are responsible for mediation of load transfer between two adjacent tissues. They are also important structures in sustaining the cellular communications to retain tissueâ s functional integration and homeostasis. [1] All cells have the capacity to sense and respond to physical and chemical stimulus and when cultured in three-dimensional (3D) environments they tend to perform their function better than in two-dimensional (2D) environments. Spatial and temporal 3D gradient hydrogels better resemble the natural environment of cells in mimicking their extracellular matrix. [2] In this study we hypothesize that differential functional properties can be engineered by modulation of macromolecule gradients in a cell seeded threedimensional hydrogel system. Specifically, differential paracrine secretory profiles can be engineered using human Bone Marrow Stem Cells (hBMSCâ s). Hence, the specific objectives of this study are to: assemble the macromolecular gradient hydrogels to evaluate the suitablity for hBMSCâ s encapsulation by cellular viability and biofunctionality by assessing the paracrine secretion of hBMSCâ s over time. The gradient hydrogels solutions were prepared by blend of macromolecules in one solution such as hyaluronic (HA) acid and collagen (Col) at different ratios. The gradient hydrogels were fabricated into cylindrical silicon moulds with higher ratio solutions assembled at the bottom of the mould and adding the two solutions consecutively on top of each other. The labelling of the macromolecules was performed to confirm the gradient through fluorescence microscopy. Additionally, AFM was conducted to assess the gradient hydrogels stiffness. Gradient hydrogels characterization was performed by HA and Col degradation assay, degree of crosslinking and stability. hBMSCâ s at P3 were encapsulated into each batch solution at 106 cells/ml solution and gradient hydrogels were produced as previously described. The hBMSCâ s were observed under confocal microscopy to assess viability by Live/Dead® staining. Cellular behaviour concerning proliferation and matrix deposition was also performed. Secretory cytokine measurement for pro-inflammatory and angiogenesis factors was carried out using ELISA. At genomic level, qPCR was carried out. The 3D gradient hydrogels platform made of different macromolecules showed to be a suitable environment for hBMSCâ s. The hBMSCâ s gradient hydrogels supported high cell survival and exhibited biofunctionality. Besides, the 3D gradient hydrogels demonstrated differentially secretion of pro-inflammatory and angiogenic factors by the encapsulated hBMSCâ s. References: 1. Mikos, AG. et al., Engineering complex tissues. Tissue Engineering 12,3307, 2006 2. Phillips, JE. et al., Proc Natl Acad Sci USA, 26:12170-5, 2008
Resumo:
Hypoxia, a condition of insufficient oxygen availability to support metabolism, occurs when the vascular supply is interrupted, as in stroke. The identification of the hypoxic and viable tissue in stroke as compared with irreversible lesions (necrosis) has relevant implications for the treatment of ischemic stroke. Traditionally, imaging by positron emission tomography (PET), using 15O-based radiotracers, allowed the measurement of perfusion and oxygen extraction in stroke, providing important insights in its pathophysiology. However, these multitracer evaluations are of limited applicability in clinical settings. More recently, specific tracers have been developed, which accumulate with an inverse relationship to oxygen concentration and thus allow visualizing the hypoxic tissue non invasively. These belong to two main groups: nitroimidazoles, and among these the 18F-Fluoroimidazole (18F-FMISO) is the most widely used, and the copper-based tracers, represented mainly by Cu-ATSM. While these tracers have been at first developed and tested in order to image hypoxia in tumors, they have also shown promising results in stroke models and preliminary clinical studies in patients with cardiovascular disorders, allowing the detection of hypoxic tissue and the prediction of the extent of subsequent ischemia and clinical outcome. These tracers have therefore the potential to select an appropriate subgroup of patients who could benefit from a hypoxia-directed treatment and provide prognosis relevant imaging. The molecular imaging of hypoxia made important progress over the last decade and has a potential for integration into the diagnostic and therapeutic workup of patients with ischemic stroke.
Resumo:
With the aid of the cobalt labelling technique, frog spinal cord motor neuron dendrites of the subpial dendritic plexus have been identified in serial electron micrographs. Computer reconstructions of various lengths (2.5-9.8 micron) of dendritic segments showed the contours of these dendrites to be highly irregular, and to present many thorn-like projections 0.4-1.8 micron long. Number, size and distribution of synaptic contacts were also determined. Almost half of the synapses occurred at the origins of the thorns and these synapses had the largest contact areas. Only 8 out of 54 synapses analysed were found on thorns and these were the smallest. For the total length of reconstructed dendrites there was, on average, one synapse per 1.2 micron, while 4.4% of the total dendritic surface was covered with synaptic contacts. The functional significance of these distal dendrites and their capacity to influence the soma membrane potential is discussed.
Resumo:
The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.
Resumo:
Report for the scientific sojourn carried out at the Universite Paris Sud – XI, France, from July until october 2007. The relationship between photosynthesis and respiration were studied in crops using carbon and nitrogen stable isotopes under well watered and water-stressed conditions. The analyses of the 13C isotopic composition (δ13C) of total organic matter (TOM) recently fixed of well-watered plants revealed that it was mainly delivered to apical tissues and tap root. The fact that that the apical leaf and stems together with the inflorescences were d13C depleted, suggests that those tissues were newly formed and had a larger sink strength and metabolic activity. Secondly, the analyses of δ13C of respired CO2 immediately after the labelling (T=0) showed that a significant part of the C respired by leaves and nodules proceeded of the recently fixed CO2. In the following harvests (T=7 and T=14) such percentage tended to decrease, especially in apical leaves. Interestingly, the respiration d13C data also highlighted that even if at T=0 part of the respired proceeded from the CO2 fixed during the labelling, this percentage was even larger at T=7. Finally, the d15N also revealed that, similarly to what described for 12C, immediately after the 15N2 labelling (T=0), apical leaf and stems, together with tap root and in this case the nodules, were the tissues with larger sink strength. It is noteworthy the fact that the largest amount of N2 newly fixed was delivered to the tap roots where it was stored until it was required for the aboveground regrowth period.
Resumo:
Research has suggested that exogenous opioid substances can have direct effects on cardiac muscle or influence neurotransmitter release via presynaptic modulation of neuronal inputs to the heart. In the present study, multiple-labelling immunohistochemistry was employed to determine the distribution of endogenous opioid peptides within the guinea-pig heart. Approximately 40% of cardiac ganglion cells contained immunoreactivity for dynorphin A (1-8), dynorphin A (1-17) and dynorphin B whilst 20% displayed leu-enkephalin immunoreactivity. Different populations of opioid-containing ganglion cells were identified according to the co-existence of opioid immunoreactivity with immunoreactivity for somatostatin and neuropeptide Y. Immunoreactivity for prodynorphin-derived peptides was observed in many sympathetic axons in the heart and was also observed, though to a lesser extent, in sensory axons. Leu-enkephalin immunoreactivity was observed in occasional sympathetic and sensory axons. No immunoreactivity was observed for met-enkephalin-arg-gly-leu or for beta-endorphin. These results demonstrate that prodynorphin-derived peptides are present in parasympathetic, sympathetic and sensory nerves within the heart, but suggest that only the prodynorphin gene is expressed in guinea-pig cardiac nerves. This study has shown that endogenous opioid peptides are well placed to regulate cardiac function via both autonomic and sensory pathways.
Resumo:
Much attention in recent years has turned to the potential of behavioural insights to improve the performance of government policy. One behavioural concept of interest is the effect of a cash transfer label on how the transfer is spent. The Winter Fuel Payment (WFP) is a labelled cash transfer to offset the costs of keeping older households warm in the winter. Previous research has shown that households spend a higher proportion of the WFP on energy expenditures due to its label (Beatty et al., 2011). If households interpret the WFP as money for their energy bills, it may reduce their willingness to undertake investments which help achieving the same goal, such as the adoption of renewable energy technologies. In this paper we show that the WFP has distortionary effects on the renewable technology market. Using the sharp eligibility criteria of the WFP in a Regression Discontinuity Design, this analysis finds a reduction in the propensity to install renewable energy technologies of around 2.7 percentage points due to the WFP. This is a considerable number. It implies that 62% of households (whose oldest member turns 60) would have invested in renewable energy but refrain to do so after receiving the WFP. This analysis suggests that the labelling effect spreads to products related to the labelled good. In this case, households use too much energy from sources which generate pollution and too little from relatively cleaner technologies.