370 resultados para 1486


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of a complex study of the sedimentary cover (continuous seismic profiling and diatom analysis) in the northeastern Sea of Japan including the Bogorov Rise an adjacent part of the Japan Basin and the continental slope, are presented. Two varied-age complexes were distinguished in the sedimentary cover of the continental slope of Primorye: Middle Miocene and Late Miocene - Pleistocene. These complexes formed in a stable tectonic setting with no significant vertical movements. A depression in the acoustic basement is located along the continental slope and it is divided from the Japan Basin by a group of volcanic structures, the most uplifted part of which forms the Bogorov Rise. The depression probably formed before Middle Miocene. In Middle Miocene the Bogorov Rise was already at depths close to modern ones. In the sedimentary cover near the Bogorov Rise buried zones were found. Probably they were channels for gas transportation in pre-Pleistocene. Deformations of sediments that occurred in the beginning of Pleistocene are established in the basin.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since pre-industrial times, uptake of anthropogenic CO2 by surface ocean waters has caused a documented change of 0.1 pH units. Calcifying organisms are sensitive to elevated CO2 concentrations due to their calcium carbonate skeletons. In temperate rocky intertidal environments, calcifying and noncalcifying macroalgae make up diverse benthic photoautotrophic communities. These communities may change as calcifiers and noncalcifiers respond differently to rising CO2 concentrations. In order to test this hypothesis, we conducted an 86?d mesocosm experiment to investigate the physiological and competitive responses of calcifying and noncalcifying temperate marine macroalgae to 385, 665, and 1486 µatm CO2. We focused on comparing 2 abundant red algae in the Northeast Atlantic: Corallina officinalis (calcifying) and Chondrus crispus (noncalcifying). We found an interactive effect of CO2 concentration and exposure time on growth rates of C. officinalis, and total protein and carbohydrate concentrations in both species. Photosynthetic rates did not show a strong response. Calcification in C. officinalis showed a parabolic response, while skeletal inorganic carbon decreased with increasing CO2. Community structure changed, as Chondrus crispus cover increased in all treatments, while C. officinalis cover decreased in both elevated-CO2 treatments. Photochemical parameters of other species are also presented. Our results suggest that CO2 will alter the competitive strengths of calcifying and noncalcifying temperate benthic macroalgae, resulting in different community structures, unless these species are able to adapt at a rate similar to or faster than the current rate of increasing sea-surface CO2 concentrations.