989 resultados para 140.3300


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In overhead conductor rail lines, aluminium beams are usually mounted with support spacing between 8 and 12 meters, to limit the maximum vertical deflection in the center of the span. This small support spacing limits the use of overhead conductor rail to tunnels, therefore it has been used almost exclusively in metropolitan networks, with operation speeds below 110 km/h. Nevertheless, due to the lower cost of maintenance required for this electrification system, some railway administrations are beginning to install it in some tunnels on long-distance lines, requesting higher operation speeds [1]. Some examples are the Barcelona and Madrid suburban networks (Spain), and recent lines in Turkey and Malaysia. In order to adapt the design of the overhead conductor for higher speeds (V > 160 km/h), particular attention must be paid to the geometry of the conductor rail in critical zones as overlaps, crossings and, especially, transitions between conductor rail and conventional catenary, since the use of overhead conductor rail is limited to tunnels, as already mentioned. This paper describes simulation techniques developed in order to take into account these critical zones. Furthermore, some specific simulations results are presented that have been used to analyze and optimizes the geometry of this special zones to get a better current collection quality, in a real suburban network. This paper presents the work undertaken by the Railways Technology Research Centre (CITEF), having over 10 years of experience in railways research [1-4].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the uncertainty of measurement of testing results is important when results have to be compared with limits and specifications. In the measurement of sound insulation following standards UNE EN ISO 140-4 the uncertainty of the final magnitude is mainly associated to the average sound pressure levels L1 and L2 measured. A parameter that allows us to quantify the spatial variation of the sound pressure level is the standard deviation of the pressure levels measured at different points of the room. In this work, for a wide number of measurements following standards UNE EN ISO 140-4 we analyzed qualitatively the behaviour of the standard deviation for L1 and L2. The study of sound fields in enclosed spaces is very difficult. There are a wide variety of rooms with different sound fields depending on factors as volume, geometry and materials. In general, we observe that the L1 and L2 standard deviations contain peaks and dips independent on characteristics of the rooms at single frequencies that could correspond to critical frequencies of walls, floors and windows or even to temporal alterations of the sound field. Also, in most measurements according to UNE EN ISO 140-4 a large similitude between L1 and L2 standard deviation is found. We believe that such result points to a coupled system between source and receiving rooms, mainly at low frequencies the shape of the L1 and L2 standard deviations is comparable to the velocity level standard deviation on a wall

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los ensayos de aislamiento acústico según normas UNE EN ISO 140-4 y 140-5 el valor de L2 es un promedio espacio-temporal de los niveles de presión sonora medidos en diferentes posiciones de la sala receptora. La desviación estándar de estos valores se puede considerar como una medida de la uniformidad del campo sonoro en el recinto. Se analiza este parámetro en función de la frecuencia y se propone un cálculo teórico del mismo como una incertidumbre combinada de la desviación estándar derivada de modelos teóricos centrados en la geometría del recinto y la desviación estándar asociada a la vibración de la pared separadora

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El apartado <4.2 Altavoz> de la Norma Internacional UNE-EN ISO 140-5 [1] especifica que la directividad del altavoz usado en el ensayo debe asegurar en todas las bandas de frecuencias de interés, unas diferencias de nivel locales inferiores a 5dB (o a 10 dB para fachadas de dimensiones mayores a 5m), medidas en campo libre, sobre una superficie del mismo tamaño y orientación que la pared o elemento a ensayar. Este requisito debe verificarse en unas bandas de frecuencia de interés que sean como mínimo los tercios de octava desde 100Hz hasta 3150Hz, y preferiblemente desde 50Hz hasta 5kHz. Desde hace unos años, en el Laboratorio de sonido de la EUIT de Telecomunicación de la Universidad Politécnica de Madrid, los autores han implementado un método en el que, a partir de las medidas de directividad en cámara anecoica de la fuente sonora a ensayar, se calcula el campo sonoro directo sobre una superficie ficticia que representa un elemento de fachada en la misma disposición que se indica en la norma ICO 140-5 y con unas dimensiones según se requieran en el procedimiento. También se estima la dimensión horizontal máxima ΔXmax de una fachada rectangular en relación de aspecto fija que permite verificar la norma con los criterios de 5dB y 10dB de diferencias máximas de niveles directos en dicha fachada. En esta ponencia se detalla el procedimiento anterior. ABSTRACT. The Section "4.2 loudspeaker" of the UNE-EN ISO 140-5 International Standard: "Field measurements of airborne sound insulation of façade elements and façades", specifies that the directivity of the loudspeaker used in the test must ensure in all frequency bands of interest, local level differences less than 5dB (or 10dB for façade dimensions greater than 5m), measured in free field over an area of the same size and orientation as the wall or element to be tested. This requirement must be verified in the frequency bands of interest which are, at least, the third octave bands from 100Hz to 3150Hz, preferably from 50Hz to 5kHz. In recent years, in the Laboratory of Sound of the EUIT Telecomunicación (Universidad Politécnica de Madrid), the authors have implemented a method that, from directivity measurements of loudspeakers performed in the anechoic room, the direct sound field on a surface in the same layout as indicated in the ISO standard is calculated. It is also estimated the maximum horizontal dimension Δxmax of a rectangular façade for each aspect ratio which verify the standard criteria of either 5dB or 10dB for the maximum differences of direct levels in the façade. This paper details the procedure above introduced.