941 resultados para 12S rRNA
Resumo:
A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3-.N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO3-.N mg of MLVSS-1 h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [C-13] methanol to biomark the DNA of the denitrifiers. The extracted [C-13]DNA and [C-12]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [C-13]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [C-12]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [C-14] methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.
Resumo:
We inferred phylogeny among the three major lineages of the Acari ( mites) from the small subunit rRNA gene. Our phylogeny indicates that the Opilioacariformes is the sister-group to the Ixodida+Holothyrida, not the Ixodida+Mesostigmata+Holothyrida, as previously thought. Support for this relationship increased when sites with the highest rates of nucleotide substitution, and thus the greatest potential for saturation with nucleotide substitutions, were removed. Indeed, the increase in support ( and resolution) was despite a 70% reduction in the number of parsimony-informative sites from 408 to 115. This shows that rather than 'noisy' sites having no impact on resolution of deep branches, 'noisy' sites have the potential to obscure phylogenetic relationships. The arrangement, Ixodida+Holothyrida+Opilioacariformes, however, may be an artefact of long-branch attraction since relative-rate tests showed that the Mesostigmata have significantly faster rates of nucleotide substitution than other parasitiform mites. Thus, the fast rates of nucleotide substitution of the Mesostigmata might have caused the Mesostigmata to be attracted to the outgroup in our trees. We tested the hypothesis that the high rate of nucleotide substitution in some mites was related to their short generation times. The Acari species that have high nucleotide substitution rates usually have short generation times; these mites also tend to be more active and thus have higher metabolic rates than other mites. Therefore, more than one factor may affect the rate of nucleotide substitution in these mites.
Resumo:
The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [C-13]acetate was used in SIP to label the DNA of the denitrifiers. The [C-13]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the C-13 library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking Up [C-14] acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the waste-water industry to enhance denitrification.
Resumo:
A 16S rRNA gene database (http://greengenes.bl.gov) addresses limitations of public repositories by providing chimera screening, standard alignment, and taxonomic classification using multiple published taxonomies. It was found that there is incongruent taxonomic nomenclature among curators even at the phylum level. Putative chimeras were identified in 3% of environmental sequences and in 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages in the Archaea and Bacteria.
Resumo:
Culture-independent molecular (16S ribosomal RNA) techniques showed distinct differences in bacterial communities associated with white band disease (WBD) Type I and healthy elkhorn coral Acropora palmata. Differences were apparent at all levels, with a greater diversity present in tissues of diseased colonies. The bacterial community associated with remote, non-diseased coral was distinct from the apparently healthy tissues of infected corals several cm from the disease lesion. This demonstrates a whole-organism effect from what appears to be a localised disease lesion, an effect that has also been recently demonstrated in white plague-like disease in star coral Montastraea annularis. The pattern of bacterial community structure changes was similar to that recently demonstrated for white plague-like disease and black band disease. Some of the changes are likely to be explained by the colonisation of dead and degrading tissues by a micro-heterotroph community adapted to the decomposition of coral tissues. However, specific ribosomal types that are absent from healthy tissues appear consistently in all samples of each of the diseases. These ribotypes are closely related members of a group of alpha-proteobacteria that cause disease, notably juvenile oyster disease, in other marine organisms. It is clearly important that members of this group are isolated for challenge experiments to determine their role in the diseases.
Resumo:
Deterioration of enhanced biological phosphorus removal (EBPR) has been linked to the proliferation of glycogen-accumulating organisms (GAOs), but few organisms possessing the GAO metabolic phenotype have been identified. An unidentified GAO was highly enriched in a laboratory-scale bioreactor and attempts to identify this organism using conventional 16S rRNA gene cloning had failed. Therefore, rRNA-based stable isotope probing followed by full-cycle rRNA analysis was used to specifically identify the putative GAOs based on their characteristic metabolic phenotype. The study obtained sequences from a group of Alphaproteobacteria not previously shown to possess the GAO phenotype, but 90% identical by 16S rRNA gene analysis to a phylogenetic clade containing cloned sequences from putative GAOs and the isolate Defluvicoccus vanus. Fluorescence in situ hybridization (FISH) probes (DF988 and DF1020) were designed to target the new group and post-FISH chemical staining demonstrated anaerobic-aerobic cycling of polyhydroxyalkanoates, as per the GAO phenotype. The successful use of probes DF988 and DF1020 required the use of unlabelled helper probes which increased probe signal intensity up to 6.6-fold, thus highlighting the utility of helper probes in FISH. The new group constituted 33% of all Bacteria in the lab-scale bioreactor from which they were identified and were also abundant (51 and 55% of Bacteria) in two other similar bioreactors in which phosphorus removal had deteriorated. Unlike the previously identified Defluvicoccus-related organisms, the group identified in this study were also found in two full-scale treatment plants performing EBPR, suggesting that this group may be industrially relevant.
Resumo:
Chronic bronchopulmonary bacterial infections remain the most common cause of morbidity and mortality among patients with cystic fibrosis (CF). Recent community sequencing work has now shown that the bacterial community in the CF lung is polymicrobial. Identifying bacteria in the CF lung through sequencing can be costly and is not practical for many laboratories. Molecular techniques such as terminal restriction fragment length polymorphism or amplicon length heterogeneity-polymerase chain reaction (LH-PCR) can provide many laboratories with the ability to study CF bacterial communities without costly sequencing. The aim of this study was to determine if the use of LH-PCR with multiple hypervariable regions of the 16S rRNA gene could be used to identify organisms found in sputum DNA. This work also determined if LH-PCR could be used to observe the dynamics of lung infections over a period of time. Nineteen samples were analysed with the V1 and the V1_V2 region of the 16S rRNA gene. Based on the amplicon size present in the V1_V2 region, Pseudomonas aeruginosa was confirmed to be in all 19 samples obtained from the patients. The V1 region provided a higher power of discrimination between bacterial profiles of patients. Both regions were able to identify trends in the bacterial population over a period of time. LH profiles showed that the CF lung community is dynamic and that changes in the community may in part be driven by the patient's antibiotic treatment. LH-PCR is a tool that is well suited for studying bacterial communities and their dynamics.
Resumo:
Deep drilling into the marine sea floor has uncovered a vast sedimentary ecosystem of microbial cells (Parkes et al., 1994, doi:10.1038/371410a0; D'Hondt et al., 2004, doi:10.1126/science.1101155). Extrapolation of direct counts of stained microbial cells to the total volume of habitable marine subsurface sediments suggests that between 56 Pg (Parkes et al., 1994, doi:10.1038/371410a0) and 303 Pg (Whitman et al., 1998) of cellular carbon could be stored in this largely unexplored habitat. From recent studies using various culture-independent techniques, no clear picture has yet emerged as to whether Archaea or Bacteria are more abundant in this extensive ecosystem (Schippers et al., doi:10.1038/nature03302; Inagaki et al., doi:10.1073/pnas.0511033103 ; Mauclaire et al., doi:10.1111/j.1472-4677.2004.00035.x; Biddle et al., doi:10.1073/pnas.0600035103). Here we show that in subsurface sediments buried deeper than 1 m in a wide range of oceanographic settings at least 87% of intact polar membrane lipids, biomarkers for the presence of live cells (Biddle et al., doi:10.1073/pnas.0600035103; Sturt et al., 2004, doi:10.1002/rcm.1378), are attributable to archaeal membranes, suggesting that Archaea constitute a major fraction of the biomass. Results obtained from modified quantitative polymerase chain reaction and slot-blot hybridization protocols support the lipid-based evidence and indicate that these techniques have previously underestimated archaeal biomass. The lipid concentrations are proportional to those of total organic carbon. On the basis of this relationship, we derived an independent estimate of amounts of cellular carbon in the global marine subsurface biosphere. Our estimate of 90 Pg of cellular carbon is consistent, within an order of magnitude, with previous estimates, and underscores the importance of marine subsurface habitats for global biomass budgets.
Resumo:
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.
Resumo:
Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.
Resumo:
Amphibian defensive skin secretions and reptile venoms are rich sources of bioactive peptides with potential pharmacological/pharmaceutical applications. As amphibian and reptile populations are in rapid global decline, our research
group has been developing analytical methods that permit generation of robust molecular data from non-invasive skin secretion samples and venom samples. While previously we have demonstrated that parallel proteome and venom gland
transcriptome analyses can be performed on such samples, here we report the presence of DNA that facilitates the more widely-used applications of gene sequencing, such as molecular phylogenetics, in a non-invasive manner that circumvents specimen sacrifice. From this “surrogate” tissue, we acquired partial 12S and 16S rRNA gene sequences that are presented for illustration purposes. Thus from a single sample of amphibian skin secretion and reptile venom, robust and complementary proteome, transcriptome and genome data can be generated for applications in diverse scientific disciplines.
Resumo:
Aminoglycosides and beta-lactams are used for the treatment of a wide range of infections due to both Gram-negative and Gram-positive. An emerging aminoglycoside resistance mechanism, methylation of the aminoacyl site of the 16S rRNA, confers high-level resistance to clinically important aminoglycosides such as amikacin, tobramycin and gentamicin. Eight 16S rRNA methyltransferase genes, armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and npmA, have been identified in several species of enterobacteria worldwide (2, 6, 7, 9, 11, 13, 14). Resistance to extended spectrum β-lactams remains additionally an important clinical problem. Apart from the large TEM, SHV, and CTX-M families, several other extended-spectrum β-lactamases (ESBLs) have been identified, including VEB enzymes, which confer high-level resistance to cephalosporins and monobactams. Although 16S rRNA methyltransferases have been frequently identified associated with different ESBLs, there has been no report of association of a 16S rRNA methyltransferase with a VEB enzyme, except for the identification of rmtC with blaVEB-6 (14)
Resumo:
Neurodegenerative disorders are heterogenous in nature and include a range of ataxias with oculomotor apraxia, which are characterised by a wide variety of neurological and ophthalmological features. This family includes recessive and dominant disorders. A subfamily of autosomal recessive cerebellar ataxias are characterised by defects in the cellular response to DNA damage. These include the well characterised disorders Ataxia-Telangiectasia (A-T) and Ataxia-Telangiectasia Like Disorder (A-TLD) as well as the recently identified diseases Spinocerebellar ataxia with axonal neuropathy Type 1 (SCAN1), Ataxia with Oculomotor Apraxia Type 2 (AOA2), as well as the subject of this thesis, Ataxia with Oculomotor Apraxia Type 1 (AOA1). AOA1 is caused by mutations in the APTX gene, which is located at chromosomal locus 9p13. This gene codes for the 342 amino acid protein Aprataxin. Mutations in APTX cause destabilization of Aprataxin, thus AOA1 is a result of Aprataxin deficiency. Aprataxin has three functional domains, an N-terminal Forkhead Associated (FHA) phosphoprotein interaction domain, a central Histidine Triad (HIT) nucleotide hydrolase domain and a C-terminal C2H2 zinc finger. Aprataxins FHA domain has homology to FHA domain of the DNA repair protein 5’ polynucleotide kinase 3’ phosphatase (PNKP). PNKP interacts with a range of DNA repair proteins via its FHA domain and plays a critical role in processing damaged DNA termini. The presence of this domain with a nucleotide hydrolase domain and a DNA binding motif implicated that Aprataxin may be involved in DNA repair and that AOA1 may be caused by a DNA repair deficit. This was substantiated by the interaction of Aprataxin with proteins involved in the repair of both single and double strand DNA breaks (XRay Cross-Complementing 1, XRCC4 and Poly-ADP Ribose Polymerase-1) and the hypersensitivity of AOA1 patient cell lines to single and double strand break inducing agents. At the commencement of this study little was known about the in vitro and in vivo properties of Aprataxin. Initially this study focused on generation of recombinant Aprataxin proteins to facilitate examination of the in vitro properties of Aprataxin. Using recombinant Aprataxin proteins I found that Aprataxin binds to double stranded DNA. Consistent with a role for Aprataxin as a DNA repair enzyme, this binding is not sequence specific. I also report that the HIT domain of Aprataxin hydrolyses adenosine derivatives and interestingly found that this activity is competitively inhibited by DNA. This provided initial evidence that DNA binds to the HIT domain of Aprataxin. The interaction of DNA with the nucleotide hydrolase domain of Aprataxin provided initial evidence that Aprataxin may be a DNA-processing factor. Following these studies, Aprataxin was found to hydrolyse 5’adenylated DNA, which can be generated by unscheduled ligation at DNA breaks with non-standard termini. I found that cell extracts from AOA1 patients do not have DNA-adenylate hydrolase activity indicating that Aprataxin is the only DNA-adenylate hydrolase in mammalian cells. I further characterised this activity by examining the contribution of the zinc finger and FHA domains to DNA-adenylate hydrolysis by the HIT domain. I found that deletion of the zinc finger ablated the activity of the HIT domain against adenylated DNA, indicating that the zinc finger may be required for the formation of a stable enzyme-substrate complex. Deletion of the FHA domain stimulated DNA-adenylate hydrolysis, which indicated that the activity of the HIT domain may be regulated by the FHA domain. Given that the FHA domain is involved in protein-protein interactions I propose that the activity of Aprataxins HIT domain may be regulated by proteins which interact with its FHA domain. We examined this possibility by measuring the DNA-adenylate hydrolase activity of extracts from cells deficient for the Aprataxin-interacting DNA repair proteins XRCC1 and PARP-1. XRCC1 deficiency did not affect Aprataxin activity but I found that Aprataxin is destabilized in the absence of PARP-1, resulting in a deficiency of DNA-adenylate hydrolase activity in PARP-1 knockout cells. This implies a critical role for PARP-1 in the stabilization of Aprataxin. Conversely I found that PARP-1 is destabilized in the absence of Aprataxin. PARP-1 is a central player in a number of DNA repair mechanisms and this implies that not only do AOA1 cells lack Aprataxin, they may also have defects in PARP-1 dependant cellular functions. Based on this I identified a defect in a PARP-1 dependant DNA repair mechanism in AOA1 cells. Additionally, I identified elevated levels of oxidized DNA in AOA1 cells, which is indicative of a defect in Base Excision Repair (BER). I attribute this to the reduced level of the BER protein Apurinic Endonuclease 1 (APE1) I identified in Aprataxin deficient cells. This study has identified and characterised multiple DNA repair defects in AOA1 cells, indicating that Aprataxin deficiency has far-reaching cellular consequences. Consistent with the literature, I show that Aprataxin is a nuclear protein with nucleoplasmic and nucleolar distribution. Previous studies have shown that Aprataxin interacts with the nucleolar rRNA processing factor nucleolin and that AOA1 cells appear to have a mild defect in rRNA synthesis. Given the nucleolar localization of Aprataxin I examined the protein-protein interactions of Aprataxin and found that Aprataxin interacts with a number of rRNA transcription and processing factors. Based on this and the nucleolar localization of Aprataxin I proposed that Aprataxin may have an alternative role in the nucleolus. I therefore examined the transcriptional activity of Aprataxin deficient cells using nucleotide analogue incorporation. I found that AOA1 cells do not display a defect in basal levels of RNA synthesis, however they display defective transcriptional responses to DNA damage. In summary, this thesis demonstrates that Aprataxin is a DNA repair enzyme responsible for the repair of adenylated DNA termini and that it is required for stabilization of at least two other DNA repair proteins. Thus not only do AOA1 cells have no Aprataxin protein or activity, they have additional deficiencies in PolyADP Ribose Polymerase-1 and Apurinic Endonuclease 1 dependant DNA repair mechanisms. I additionally demonstrate DNA-damage inducible transcriptional defects in AOA1 cells, indicating that Aprataxin deficiency confers a broad range of cellular defects and highlighting the complexity of the cellular response to DNA damage and the multiple defects which result from Aprataxin deficiency. My detailed characterization of the cellular consequences of Aprataxin deficiency provides an important contribution to our understanding of interlinking DNA repair processes.
Resumo:
The purpose of this paper is to determine the prevalence of the toxic shock toxin gene (tst) and to enumerate the circulating strains of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in Australian isolates collected over two decades. The aim was to subtype these strains using the binary genes pvl, cna, sdrE, pUB110 and pT181. Isolates were assayed using real-time polymerase chain reaction (PCR) for mecA, nuc, 16 S rRNA, eight single-nucleotide polymorphisms (SNPs) and for five binary genes. Two realtime PCR assays were developed for tst. The 90 MRSA isolates belonged to CC239 (39 in 1989, 38 in 1996 and ten in 2003), CC1 (two in 2003) and CC22 (one in 2003). The majority of the 210 MSSA isolates belonged to CC1 (26), CC5 (24) and CC78 (23). Only 18 isolates were tst-positive and only 15 were pvl-positive. Nine MSSA isolates belonged to five binary types of ST93, including two pvlpositive types. The proportion of tst-positive and pvl-positive isolates was low and no significant increase was demonstrated. Dominant MSSA clonal complexes were similar to those seen elsewhere, with the exception of CC78. CC239 MRSA (AUS-2/3) was the predominant MRSA but decreased significantly in prevalence, while CC22 (EMRSA-15) and CC1 (WA-1) emerged. Genetically diverse ST93 MSSA predated the emergence of ST93- MRSA (the Queensland clone).
Resumo:
Acute lower respiratory tract infections (ALRTIs) are a common cause of morbidity and mortality among children under 5 years of age and are found worldwide, with pneumonia as the most severe manifestation. Although the incidence of severe disease varies both between individuals and countries, there is still no clear understanding of what causes this variation. Studies of community-acquired pneumonia (CAP) have traditionally not focused on viral causes of disease due to a paucity of diagnostic tools. However, with the emergence of molecular techniques, it is now known that viruses outnumber bacteria as the etiological agents of childhood CAP, especially in children under 2 years of age. The main objective of this study was to investigate viruses contributing to disease severity in cases of childhood ALRTI, using a two year cohort study following 2014 infants and children enrolled in Bandung, Indonesia. A total of 352 nasopharyngeal washes collected from 256 paediatric ALRTI patients were used for analysis. A subset of samples was screened using a novel microarray pathogen detection method that identified respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and human rhinovirus (HRV) in the samples. Real-time RT-PCR was used both for confirming and quantifying viruses found in the nasopharyngeal samples. Viral copy numbers were determined and normalised to the numbers of human cells collected with the use of 18S rRNA. Molecular epidemiology was performed for RSV A and hMPV using sequences to the glycoprotein gene and nucleoprotein gene respectively, to determine genotypes circulating in this Indonesian paediatric cohort. This study found that HRV (119/352; 33.8%) was the most common virus detected as the cause of respiratory tract infections in this cohort, followed by the viral pathogens RSV A (73/352; 20.7%), hMPV (30/352; 8.5%) and RSV B (12/352; 3.4%). Co-infections of more than two viruses were detected in 31 episodes (defined as an infection which occurred more than two weeks apart), accounting for 8.8% of the 352 samples tested or 15.4% of the 201 episodes with at least one virus detected. RSV A genotypes circulating in this population were predominantly GA2, GA5 and GA7, while hMPV genotypes circulating were mainly A2a (27/30; 90.0%), B2 (2/30; 6.7%) and A1 (1/30; 3.3%). This study found no evidence of disease severity associated either with a specific virus or viral strain, or with viral load. However, this study did find a significant association with co-infection of RSV A and HRV with severe disease (P = 0.006), suggesting that this may be a novel cause of severe disease.