991 resultados para 125-778
Resumo:
Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.
Resumo:
During Ocean Drilling Program Leg 125, a thick sequence of middle Eocene to Pleistocene pelagic sediments, volcanogenic sediments, and predominantly extrusive volcanic rocks was recovered. Calcareous nannofossils were examined from 15 holes at nine sites, but Eocene to Miocene calcareous nannofossils were found only from Holes 782A, 784A, 786A, and 786B. In portions of Holes 786A and 786B, datable nannofossil oozes were found intercalated among volcanic flows. The nannofossil biostratigraphy of these holes indicates the presence of three well-defined hiatuses: within the lower Oligocene, between the upper Oligocene and middle Miocene, and between the middle and upper Miocene. An attempt was made to correlate the magnetochronological data with the first or last occurrences of the following species: Sphenolithus distentus, Reticulofenestra bisecta, Reticulofenestra reticulata, and Cyclicargolithus floridanus abisectus n. comb. The results indicate that the FO of Sphenolithus distentus can extend down to Zone CP16 (34.7 Ma), the LO of Reticulofenestra bisecta best defines the boundary between CP19a and CP19b (23.5 Ma), and the LO of Cyclicargolithus f. abisectus n. comb, can extend up to Subzone CN5a (12.5 Ma). No latest Oligocene Cyclicargolithus f. abisectus n. comb, acme was observed. Cyclicargolithus abisectus is considered a subspecies or variant of Cyclicargolithus floridanus because their LOs coincide. As a consequence of these observations, we have modified the definitions of Bukry's Subzones CP14a, CP14b, and CNla. Analyses of sediment-accumulation rates indicate that the rates increased gradually from the Eocene to Miocene. This is especially evident since the late Miocene in Hole 782A. In different parts of the Izu-Bonin forearc basin, however, the rate is not everywhere the same and appears to vary according to the import of volcanogenic materials.
Resumo:
Iodine and boron were analyzed in pore fluids, serpentinized ultramafic clasts, and the serpentinized mud matrix of the South Chamorro Seamount mud volcano (Ocean Drilling Program Leg 195 Site 1200) to determine the distribution of these elements in deep forearc settings. Similar analyses of clasts and muds from the Conical Seamount mud volcano (Leg 125 Site 779) were also carried out. Interstitial pore fluids are enriched in boron and iodine without appreciable change in chloride concentration relative to seawater. Both the ultramafic clasts and the associated serpentinized mud present the highest documented iodine concentrations for all types of nonsedimentary rocks (6.3-101.7 µmol/kg). Such high iodine concentrations, if commonplace in marine forearc settings, may constitute a significant, previously unknown reservoir of iodine. This serpentinized forearc mantle reservoir may potentially contribute to the total crustal iodine budget and provide a mechanism for its recycling at convergent plate margins. Both clasts and mud show concurrent enrichments in boron and iodine, and the similarity in pore fluid profiles also suggests that these two incompatible, fluid-mobile elements behave similarly at convergent plate margins.
Resumo:
During Leg 125 of the Ocean Drilling Program, nine sites were drilled in the Mariana and Izu-Bonin areas. The sediments recovered range in age from early Pliocene to late Pleistocene in the Mariana Region and from middle Eocene to late Pleistocene in the Izu-Bonin region. This contribution concerns the biostratigraphic study of the latest Miocene (CN9b Subzone) to late Pleistocene interval. Aquantitative analysis of all calcareous nannofossil associations was conducted for the interval encompassing late Miocene to the top of the early Pliocene. Moreover, the genera Discoaster, Amaurolithus, and Ceratolithus were quantitatively investigated from the late Miocene to late Pliocene interval. Some bioevents were identified, and variations in the composition of assemblages were linked to climatic changes.